
CS151.02 2010S Functional Problem Solving

Class 06: Computing with Symbols and Numbers
Held: Tuesday, February 2, 2010

Summary: We explore a bit more about data in Scheme, particularly the ways in which our version of
Scheme supports numbers.

Related Pages:

EBoard.
Lab: Numeric Computation.
Reading: Numeric Values & Symbolic Values.

Notes:

Reading for Wednesday: Drawings as Values. Somewhat longer, and expects some attempts to
interpret code.
There’s Drupal training for students on Saturday. Note that a lot of offices on campus are likely to be
looking for students who are able to use Drupal. (No, you don’t get EC for Drupal training.)
Assignment 1 returned via email last night.
Quiz 1 returned via email last night. I saw a few problems with repetition, which we’ll go over
quickly again.
Are there questions on Assignment 2?
EC: CS Table Friday at noon. Information distributed via email.
EC: CS Extras Thursday at 4:30 in 3821 (Talk on summer opportunities in CS).
For some reason, there are some links to the Fall 2009 site in strange places on the course web site. If
you notice some, I’d appreciate being informed.
There is a lot more in today’s outline than I plan to discuss in class.

Overview:

Types.
Kinds of Numbers.
Modulo.
Lab.

Types
As you may have noted in your first experiments with Scheme, Scheme assigns types to variables.
For example, a value might be a number, or a string, or an image identifier, or a procedure, or a
drawing, or
Computer scientists often think of types in two different ways:

Data-driven: A type is a set of values.

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2010S/

Purpose-driven: A type provides information on the valid operations that may be applied to a
piece of data.

We will alternate between the two definitions.
Many languages (particularly the ones you’ve reported being familiar with) require you to assign a
type to a variable when you declare that variable.
Scheme does not require you to assign types ot variables; it checks the type of each operand when it
executes a procedure.

Scheme also provides procedures that let you determine the type of a value.
As the semester progresses, you will learn new types.
As you learn each type, you’ll learn a variety of things (that correspond, in some sense, to those two
approaches):

How to express values in the type. For example, we express string values by surrounding them
with double-quotation-marks and we express numbers in much the way we always have.
What operations are possible on values in the type. For example, we can use the addition
operation (+) on numbers and we can use the string-append operation on strings.

Scheme’s Numeric Types
Instead of a general “numbers” type, Scheme provides a variety of kinds of numbers.
Integers are numbers without a fractional component.
Rational numbers can be expressed as the ratio of two integers.
Real numbers appear somewhere on the number line.

In mathematics, real numbers can be rational or irrational.
In Scheme, real numbers are all rational.

Complex numbers may include an imaginary component.
You can (almost) always use an integer when a real is expected, but you cannot always use
Scheme also represents some numbers exactly and some numbers inexactly. (That is, it approximates
some numbers.)

It certainly has to approximate irrational numbers.
But it also approximates many other numbers.
It may surprise you to see which numbers are represented inexactly. (We’ll return to this issue
later.)

Some important numeric predicates (procedures that return true or false): number?, real?,
integer?, exact?, and inexact?.

Modulo
The mod (modulo, modulus) operation is one of the trickier operations we use in this class (and we
use it a lot).
Essentially, mod is used to break up the number line into even chunks.

If you mod by 7, you break the number line up into chunks of size 7.
If you mod by 23, you break the number line up into chunks of size 23.

For each chunk, we start counting at 0.
For example

2

Number line: -9 -8|-7 -6 -5 -4 -3 -2 -1| 0 1 2 3 4 5 6| 7 8 9 10 11
Modulo 7: 5 6| 0 1 2 3 4 5 6| 0 1 2 3 4 5 6| 0 1 2 3 4

The (modulo i n) operation allows us to cycle through the numbers between 0 and n-1.

Lab
Do the lab on numeric values.
Be prepared to reflect.

Copyright © 2007-10 Janet Davis, Matthew Kluber, Samuel A. Rebelsky, and Jerod Weinman. (Selected
materials copyright by John David Stone and Henry Walker and used by permission.) This material is
based upon work partially supported by the National Science Foundation under Grant No. CCLI-0633090.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation. This work is
licensed under a Creative Commons Attribution-NonCommercial 2.5 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to
Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Class 06: Computing with Symbols and Numbers
	Types
	Scheme's Numeric Types
	Modulo
	Lab

