
CS151.01 2009F Functional Problem Solving

Class 28: Recursion with Helper Procedures
Held: Wednesday, 14 October 2009

Summary: We consider a different form of recursion, one based on the construction of recursive helpers
that take additional parameters. Along the way, we consider the idea of tail recursion. We also explore
how careless design of recursive procedures can inadvertently lead to slow execution.

Related Pages:

EBoard.
Lab: Recursion with Helper Procedures.
Reading: Recursion with Helper Procedures.
Due: Assignment 6: Conditionals.

Notes:

Yes, we will have a quiz on Friday. It will be on recursion (including, possibly, helper recursion).
No, you don’t get an assignment 7 to do over fall break.
Reading for Friday: List Recursion, Revisited.

Overview:

Delayed evaluation in recursive procedures.
A strategy: Carry along intermediate results.
Using recursive helpers.
A term: Tail recursion.
Designing recursive procedures.

Delayed Evalution in Recursive Procedures
A number of you have noted that recursion, as written, builds up a bunch of stuff to evaluate.
For example, if we’re summing the list (2 3 5 7 11 13), we end up with
(+ 2 (+ 3 (+ 5 (+ 7 (+ 11 (+ 13 (sum ())))))))
before we start doing the addition.
Similarly, in selecting only the names of dark colors from a list, we might end up with
(cons "black" (cons "darkblue" (cons "darkgrey" (select-dark ()))))
Once we get to the base case of the recursion, we can then start to build up the actual result.
Some people find the delayed evaluation natural, others find it awkward.
For the latter group, we look for a strategy that helps us evaluate partial results along the way.

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2009F/

Helper Recursion
The model that we call helper recursion (and that many of our colleagues call tail recursion) adds an
extra parameter to the recursive procedure

That extra parameter carries along partial/intermediate results
For example, in summing the list (2 3 5 7 11 13), we might have

 partial-sum unexplored-elements
 0 (2 3 5 7 11 13)
 2 (3 5 7 11 13)
 5 (5 7 11 13)
 8 (7 11 13)
 15 (11 13)
 26 (13)
 39 ()

When we run out of elements, we can use the intermediate result as our final result
However, there’s a small problem with this strategy: When a client makes the first call to the
procedure, they won’t necessarily understand the purpose of the extra parameter.

Hence, we make the modified procedure a helper to the top-level procedure.
The top-level procedure is responsible for filling in the extra parameter of the helper.

Tail Recursion
Note that the two forms of recurison we’ve seen (direct recursion and helper recursion) have a
somewhat different post-recursion step

In the first kinds of recursive procedures we wrote, there’s still work to do after the recursive
call finishes.
In the helper-recursion procedures, once we’re done with the recursive call, the result is ready; it
requires no further processing (at least not within the helper).

It turns out that there are particularly efficient ways to implement recursive procedures that do not
further process recursive results.
Because of this efficiency, we have a special term for such procedures. We call them tail-recursive
procedures.
If any recursive call is a the last operation of a procedure (that is, the tail of the procedure), then we
say that the procedure is tail recursive.

If some work may be required after one of the recursive calls, then we say that the procedure is
not tail recursive.

Copyright © 2007-9 Janet Davis, Matthew Kluber, Samuel A. Rebelsky, and Jerod Weinman. (Selected
materials copyright by John David Stone and Henry Walker and used by permission.) This material is
based upon work partially supported by the National Science Foundation under Grant No. CCLI-0633090.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation. This work is
licensed under a Creative Commons Attribution-NonCommercial 2.5 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to

2

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

	Class 28: Recursion with Helper Procedures
	Delayed Evalution in Recursive Procedures
	Helper Recursion
	Tail Recursion

