
CS151.01 2009F Functional Problem Solving 

Class 20: Naming Local Values
Held: Wednesday, 30 September 2009

Summary: We consider why and how you name values within a procedure, and limit access to those
names to within the procedure. 

Related Pages:

EBoard. 
Lab: Local Bindings. 
Reading: Local Bindings. 
Due: Assignment 4: Exploring Colors. 

Notes:

I will not have office hours today. Sorry. 
Please keep your partners from Monday. 
Assignment 5 is now ready. 
EC for attending some part of the Rosenfield anniversary symposium on Thursday. 
Don’t forget about the history of programming languages talk at noon on Friday in 3821. 
Reading for Friday: Boolean Values and Predicate Procedures.

Overview:

Why name things. 
Naming things with let. 
Naming things with let*. 
Naming procedures. 
Lab.

The Problem: Naming Values
As we’ve seen in many problems, it helps to name the values that we use within our procedure. Why? 

It can make the code more readable because the name tells us something about the role the value
plays. 
It can make the code more efficient, because it allows us to avoid recomputing a value.

Another reasons to name things is that we might want to create helper procedures and only make
them available to the current procedure.

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2009F/
http://drupal.cs.grinnell.edu/drupal6/node/56


Naming Things with let
You name things with let. 
let has the form 

(let ((name 1  exp 1 )

      (name 2  exp 2 )

      ...
      (name n  exp n ))

  body)

let has the meaning: 
Evaluate all the expressions. 
Update the binding table to associate each name with the corresponding value. 
Evaluate body using the updated binding table. 
Eliminate all the bindings just created.

You can use let in a simple expression: 

(define values (list 1 4 2 4 1 5 9))
(let ((largest (max values))
      (smallest (min values)))
  (/ (+ largest smallest) 2))

More frequently, we use let within a procedure.

Sequencing Bindings with let*
If we want to bind some things in sequence, we need to use let* rather than let. 
let* has the form 

(let* ((name 1  exp 1 )

       (name 2  exp 2 )

       ...
       (name n  exp n ))

  body)

let* has the meaning: 
Evaluate exp1 . 

Update the binding table to associate name1  with that value. 

Evaluate exp2 . 

Update the binding table to associate name2  with that value. 

... 
Evaluate expn . 

Update the binding table to associate namen  with that value. 

Evaluate body using the updated binding table. 
Eliminate all the bindings just created.

2



Copyright © 2007-9 Janet Davis, Matthew Kluber, Samuel A. Rebelsky, and Jerod Weinman. (Selected
materials copyright by John David Stone and Henry Walker and used by permission.) This material is
based upon work partially supported by the National Science Foundation under Grant No. CCLI-0633090.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation. This work is
licensed under a Creative Commons Attribution-NonCommercial 2.5 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to
Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. 

3

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Class 20: Naming Local Values
	The Problem: Naming Values
	Naming Things with let
	Sequencing Bindings with let*


