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Objectsin Scheme

Summary: We consider a mechanism for grouping information together, but limiting access to the
internal representation. We refer to the values build in this wajpjasts, although the resultant values
lack some of the key aspects of the objects used in traditional object-oriented programming.
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Representing Compound | nformation

In our exploration of Scheme, we’ve seen a numbeaiaf structures that allow us to organize data. A list
is a dynamic data structure with a variable number of components. A vector is a data structure with a fixed
number of components, each of which you can quickly access by number.

As you've seen, we often build data structures for a particular kind of data. For example, we might choose
to represent the information for a student with ten components:

o

. a string for the student’s last name;

: a string for the student’s first name;

. a string for student’s student id number;

. a string for the student’s major;

: an integer for the students’ graduation yeatr;

. alist of symbols’(check,’ ni nus,’ check- pl us, etc.) for homework grades;
: a list of real numbers for exam grades;

: a list of strings"(A", " B- ", etc.) for project grades;

. a single real number for participation grade; and

- a list of strings for extra credit events.
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For example, we might store those components in a vector, with the last name at position 0, the first name
at position 1, and so on and so forth. One strategy is to then tell other programmers about this
representation, and let them rely on the structure (e.g., someone who wants to change the last name would
do avect or - set ! for position 0).
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However, if we change the representation, other programmers must then change their code. Hence, it is
often better to provide procedures to give other programmers access to our structure. If they use only our
procedures, then we can change the representation freely (as long as we change our procedures
correspondingly) and their code will continue to work.

Here are some sample procedures for a student data type.

(define make- student
(lanbda (last-nane first-nanme id major graduation-year)
(cond
((not (string? |last-nane))
(error "make-student: paranmeter 0 (last-nanme) nust be a string"))
((not (string? first-nane))
(error "make-student: parameter 1 (first-nane) nust be a string"))
((not (string? id))
(error "make-student: parameter 3 (id) nust be a string"))
((not (string? major))
(error "make-student: paranmeter 4 (major) nust be a string"))
((not (integer? graduation-year))
(error "make-student: parameter 5 (graduation-year) nust be an integer"))
((or (< graduation-year 2000) (> graduation-year 2010))
(error "make-student: paranmeter 6 (graduation-year) nust be in the range [2000 ... 2010]"))
(el se
(vector last-nane first-name id major graduation-year
null null null 90 null)))))

(define get-student-1ast-nane
(1l anbda (student)
(vector-ref student 0)))

(define get-student-ec
(1 ambda (student)
(vector-ref student 9)))

(define set-student-nane
(1 anbda (student first-nanme |ast-nane)
(cond

((not (string? first-nane))
(error "set-student-nane: paranmeter 1 (last-nane) nust be a string"))
((not (string? first-nane))
(error "set-student-nane: paranmeter 2 (first-name) nust be a string"))
(el se
(vector-set! student O first-nane)
(vector-set! student 1 last-nane)))))

(defi ne add-student-ec!
(l anbda (student event)
(if (not (string? event))
(error "add-student-ec: paraneter nust be a string")
(vector-set student 9
(append (vector-ref student 9)
(list event))))))



(define count-student-ec
(1l anbda (student)
(length (vector-ref student 9))))

You can find the complete set of codesinudent . scm

Here’s a sample session:

> (define sam (nmake-student "Rebel sky" "Sanuel" "00000032"
"Comput er Sci ence" 2010))

> (di spl ay-student sam

Record for Rebel sky, Sanuel [ID: 00000032]

Maj or: Conput er Science; Cass: 2010

No Homrewor k.

No Exans.

No Projects.

Participation: 90

No Extra Credit.

(add- st udent - homewor k! sam ’ mi nus)

(add- st udent - homewor k! sam ’ check)

(add- st udent - homewor k! sam ’ mi nus)

(add- st udent - examl sam 90)

(add- student -exam sam 80) ; sl unp!

(add- student -exam sam 100) ; recovered!

(add- student -exam sam 0) ; skipped the final

(add- student -ec! sam’trogdor)

add- student -ec: parameter nust be a string

(add- student -ec! sam "trogdor")

(add-student-ec! sam "anti-train concert")

(count - student-ec sam
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(add- st udent - proj ect sam "B")

reference to undefined identifier: add-student-project
> (add-student-project! sam"B")

> (add-student-project! sam"C")

> (di spl ay-student sam

Record for Rebel sky, Sanuel [ID: 00000032]
Maj or: Conput er Science; Cass: 2010
Homewor k: m nus, check, m nus

Exans: 90, 80, 100, O

Projects: B, C

Participation: 90

Extra Credit: trogdor, anti-train concert

If we did not want to permit other programmers to change particular parts (e.g., we don’t generally want
student-id numbers to change) or wanted to limit the kinds of possible access (e.g., you can add forms of
extra credit, but not remove them), we would not provide procedures that gave that extra access.

> (set-student-id sam "bozo")
reference to undefined identifier: set-student-id



Problems With This Technique

This technique (of providing both representation and procedures that use that representation) has many
advantages, as suggested above. For many, the most compelling advantagtiésttbadle (procedures
that use our student representation) need not change when the representation changes.

Another possible advantage is that we prevent naive programmers from doing inappropriate things to our
structure (e.g., storing a symbol in the list of events). Unfortunately, we haven't really prevented such
inappropriate behavior, since clients can still determine the representation we use and then modify things
directly.

> (define sam (make-student "Rebel sky" "Samuel "
"00000032" " Conputer Science"
2010))

> (count-student-ec sam

0

> (add-student-ec sam’trogdor)

add- student -ec: parameter nust be a string

> sam

#10( " Rebel sky" "Sanuel " "00000032" "Comnputer Science" 2010 null null null 90 null)

> (vector-set! sam9 ’trogdor)

> (get-student-ec sam

t rogdor

> (count-student-ec sam

| engt h: expects argunent of type <proper l|ist>; given trogdor

We'd like to encapsulate our implementation so that we can hide how our students are implemented and
restrict how they’re used.

Objects: Representationsthat Protect Their Contents

One of the basic ideas of the programming paradigm calliedt-oriented programming is to encapsulate

the data so as to intercept low-level interventions and treat them as erroljediiis a data structure that
permits access to and modification of its elements only through a fixed set of procedures, the object’'s
methods. One cannot “peek inside” an object; one is limited to the procedures provided.

To request the execution of one of these methodssamade the object anessage that names the desired

method, providing any additional parameters that the object will need as part of the message. Attempting
to send an object a message that does not name one of its methods simply causes an error. The custom is to
precede the message names with colons.

Objectsin Scheme

The Scheme standard does not include objects. However, you can implement an object as a procedure that
takes messages as parameters and inspects them before acting on them. Since Scheme typically does not
allow one to look inside procedures, procedures provide an appropriate form of encapsulation.



How do we store data for use within the procedure? We can use vectors to build the storage locations that
are protected by the procedure.

Here’s a simple example -- an object namsedpl e- box that contains only one fieldont ent s, and
responds to only one messageshow- cont ent s.

;o1 Val ue
T sanpl e- box
iy Type:
T obj ect
i+ Purpose
T To provide a sanple "box"; something whose val ue you
T can | ook at but not change
;.. Valid Messages
:show contents
T Cet the contents of the box
(define sanpl e- box
(let ((contents (vector 42)))
(lanmbda (nessage)
(if (eq? nessage ':show contents)
(vector-ref contents 0)
(error "sanpl e-box: unrecogni zed nmessage")))))

That is,

e Build a new symbol table with theet that contains one name-to-value mapping (that is, it maps
cont ent s to a one-element vector that contains 42).

e Build and return a procedure that takes a message as a parameter. Siacdtiee falls within the
| et, it has access to that new symbol table rotking else has direct access.

We can test our sample object by trying to set the contents to O.
> (sanpl e- box
42

> (sanpl e-box ’:set-contents-to-zero!)

sanpl e- box: unrecogni zed nessage

> (sanpl e-box ':set-contents 0)

sanpl e- box: unrecogni zed nessage

> (set! (sanple-box ':show contents) 0)

set!: not an identifier at: (sanple-box (quote :show contents))
> (set! contents 0)

set!: cannot set undefined identifier: contents

> (sanpl e-box ’:show contents)

42

: show cont ent s)

’

All these attempts to modify the contents fieldsafipl e- box fail, as will all attempts. Sending it the
message : set - cont ent s-t 0- zer o! doesn’'t work, because the procedure is not set up to receive
such a message. And you can't reach the actoal ent s variable from outside theanpl e- box
procedure because that identifier is bound to the storage location that containhg i8ide the body of

thel et -expression.



In fact, we can’t even see that vector (as we could with students)

> sanpl e- box
#<pr ocedur e: sanpl e- box>

Changing Object Values
One could revise the procedure so that it would accept the meéssage- cont ent s-t 0-zero! :

;55 Value
M zer oabl e- box
iy Type:
M obj ect
i+, Purpose:
M To provide a sanple "box"; something whose val ue you
M can | ook at and change to O
;;; Valid Messages:
M :showcontents
M Get the contents of the box.
. :set-to-zero!
M Set the contents of the box to O.
(define zeroabl e-box
(let ((contents (vector 57)))
(lanbda (nessage)
(cond ((eq? nmessage ’':show contents)
(vector-ref contents 0))
((eq? nessage ':set-contents-to-zero!)
(vector-set! contents 0 0))
(el se (error "zeroabl e-box: unrecogni zed nessage"))))))

Here’s a simple interaction with the box.

> (zeroabl e- box
57

: show cont ent s)
zer oabl e- box ’

> ( :set-contents-to-zerol)
> (zeroabl e- box
0

: show cont ent s)

Of course, there is no way for anyone to set the contents of this particular object to aexgiiyingero.
Now that the box has been zeroed its contents will remain zero forever. If we want the box to change, we
might add an : i ncrenment! message.

;o Val ue

B anot her - box

vay Type:

B obj ect

;' Purpose:

S To provide a sanple "box"; something whose val ue you
M can |l ook at, set to 0, and increnent
;7 Valid Messages:

M :show contents

M Get the contents of the box.

Yy .set-to-zero!

M Set the contents of the box to O.



- sincrement!

M Add 1 to the contents of the box.

(define anot her - box

(let ((contents (vector 0)))
(lanbda (nessage)
(cond ((eq? nmessage ’':show contents)

(vector-ref contents 0))
((eq? nessage ':set-contents-to-zero!)
(vector-set! contents 0 0))
((eq? nessage ':increnment!)
(vector-set! contents O (+ (vector-ref contents 0) 1)))
(el se (error "zeroabl e-box: unrecogni zed nessage"))))))

)

Our interactions with this box are similar.
> (anot her - box
0

> (anot her - box
> (anot her - box

: show cont ent s)
"rincrenent!)
rincrement!)

> (another-box ':increnent!)
> (anot her-box ’':show contents)
3

> (anot her-box ’':set-contents-to-zero!)
> (anot her-box ’':show contents)

0

> (another-box ':increnent!)

> (anot her-box ’':show contents)
1

What if we want to include a value with a message, such as when we want to change the boxed value to a
particular new value? We’'ll see later in this reading.

Making Several Objects of the Same Type

In the preceding examples, we have created only one object of each type, but it is not difficult to write a
higher-order constructor procedure that can be called repeatedly, to build and return any number of objects
of a given type. Suppose, for example, that we want to build sewetethes, each of which is an object

with one field (a Boolean value) and responding to only two messagssiow posi ti on, which

returns’ on if the field containg#t and’ of f if it contains#f, and’ : t oggl e! , which changes the

field from#t to#f or from#f to#t .

We might start by building a single switch.

(define switch
(let ((state (vector #f)))
(l anbda (nessage)
(cond ((eq? nmessage ’':show position)

(if (vector-ref state 0) 'on 'off))

((eq? nessage ':toggle!)

(vector-set! state 0 (not (vector-ref state 0))))
(el se (error "switch: unrecogni zed nessage"))))))



However, when we want more than one, we need a procedure that builds switches. Hence, we need to
write a procedure that returns something like the previous object. We call something that returns objects a
constructor. Here’s a constructor for switches.

;55 Procedure:
. make- swi tch
,,, Paraneters:
. None
;55 Purpose:
. Creates a new switch in the off position.
;55 Produces:
N newswi tch, a switch
;55 Preconditions:
. None
;.5 Postconditions:
N newswi tch i s an object which responds to two nessages:
- :show posi tion
N Shows the current position ('on or 'off)
. :toggl el
. Swi tches the current position
(define make-switch
(I anbda ()
(let ((state (vector #f))) ; ALl switches are off when manuf act ured.
(lambda (nessage)
(cond ((eq? nmessage ’':type)
"switch)
((eq? nessage ':->string)
(string-append "#<sw tch>("
(if (vector-ref state 0) "on" "off")
“)"))
((eq? nessage ’:show position)
(if (vector-ref state 0) 'on ’'off))
((eq? nessage ':toggle!)
(vector-set! state O (not (vector-ref state 0))))
(el se (error "#<switch>: unrecogni zed nmessage")))))))

The ordering of lambdas and lets is important. Becausentthee- swi t ch procedure enters the

| et -expression to create a new binding each time it is invoked, each switch that is returned by
make- swi t ch gets a separate statit at e variable to put its state in. This static variable retains its
contents unchanged even between calls to the object and independently of calls to any other object of the
same type.

You'll note that we've added support for two other messdgetsype and’ : - >stri ng message. It is
good practice to regularly include those two methods.

> (define overhead-lights (nake-sw tch))
> (define board-1ights (nmake-swi tch))

> (overhead-lights ':show position)

of f

> (board-1ights ’':show position)

of f

> (board-lights ':toggle!)

> (board-1ights ’':show position)

on

> (overhead-lights

: show posi tion)



of f

> (overhead-lights ':togglel!)
> (overhead-lights ':->string)
"#<swi tch>(on)"

> (overhead-lights ':type)

switch

M ethods with Parameters

In all of the preceding examples, the messages received by the object have not included any additional
parameters. Suppose that we want to define an object simdanfdl e- box except that one can replace

the value in theont ent s field with any integer that is larger than the one that it currently contains, by
giving it the message: repl ace-w t h and including the new, larger value. We can accommodate
such messages by making the object a procedure of variable arity, requiring at least one argument (the
name of the method to be applied) but allowing for more:

;;; Procedure:
- make- gr owi ng- box
;;; Paraneters:
Vo None
7+ Purpose:
- Creates a new box whose val ues you can change to | arger val ues.
;;; Produces:
o newbox, a box whose contents can change to | arger val ues.
;.; Preconditions:
Vs None
;;; Postconditions:
M- newbox i s an object which responds to two nessages:
- :show contents
- Get the contents of the box.
- :replace-with! val
. Set the contents of the box to val, provided val
. is larger than the current contents of the box.
(define make-grow ng- box
(lanmbda ()
; Build a new vector that contains the one val ue
; accessed by the object.
(let ((contents (vector 0)))
; Respond to nmessages with additional paraneters
(l anmbda (nessage . paraneters)
(cond
; [type]
; Get the type
((eq? nessage ':type)
' gr owi ng- box)
i [:->string]
; Convert to a sting (typically for output)
((eq? nessage ':->string)
(string-append "#<grow ng-box>("
(nunber->string (vector-ref contents 0))
"))
; [:show contents]
; Show the current contents of the box
((eq? nessage ':show contents)



(vector-ref contents 0))
; [:replace-w th! val]
; Repl ace the contents of the box with va
((eq? nessage ':replace-with!)
(cond
; W need at | east one paraneter
((null? paraneters)
(error "grow ng-box:replace-with!: requires an argunment"))
; But no nore than one
((not (null? (cdr paraneters)))
(error "grow ng-box:replace-with!: only one argument allowed"))
(el se
(let ((newcontents (car paraneters)))
(cond
; That paranmeter needs to be an integer
((not (integer? new contents))
(error "grow ng-box:replace-with
"the argunent nust be an integer"))
; Precondition: The new val ue nust be | arger
((<= newcontents (vector-ref contents 0))
(error "grow ng-box:replace-with: "
"the argunent nust exceed the current contents"))
(el se (vector-set! contents O new contents)))))))
; [ OTHER MESSAGE]
; No ot her nmessages are all owed
(el se (error
(string-append
"#<grow ng- box>: unrecogni zed nessage
(synbol ->string nessage)))))))))

> (define growabl e (nake-grow ng-box))
> box

<pr ocedur e>

(growabl e ’: show cont ent s)

(growabl e ’:replace-with! 5)
(growabl e ’: show cont ent s)

vV o1V VOV

(growabl e ’:replace-with! 3)

growi ng- box: repl ace-with: the argunment nust exceed the current contents
> (growabl e ':show contents)

5

> (growabl e ':replace-with! 'foo)

growi ng- box: repl ace-wi th: the argunment nust be an integer

> (growable ':replace-wth!)

gr ow ng- box: repl ace-with: an argunent is required

> (growabl e ':show contents)

5
> (growable ':replace-with! 7)
> (growabl e ':->string)

" #<gr owi ng- box>(7)"

10



Objectswith Multiple Fields

All the objects that we've seen so far have stored only one value. However, since we use a vector to keep
track of the value, we can certainly store more than one value in the vector. For example, suppose we want
something that keeps track of the number of times we get the answers “yes” and “no”. We’'ll use position 0

to keep track of the yes answers and position 1 to keep track of the no answers.

(define make-yesno
(I anbda ()
(let ((counts (vector 0 0)))
(lanmbda (nessage)

(cond
7 [type]
((eq? nessage ':type)
'yesno)
i [:->string]
; Convert to a string
((eq? nessage ':->string)

(string-append "<yesno>("
"yes:" (number->string (vector-ref counts 0))
, ho:" (number->string (vector-ref counts 1))

"))
[:yes!]
I ncrement the nunber of yes responses.
((eq? nessage ':yes!)
(vector-set! counts 0 (+ 1 (vector-ref counts 0))))
[:no!]
I ncrement the nunber of no responses
((eqg? nessage ':no!)
(vector-set! counts 1 (+ 1 (vector-ref counts 1))))
[:report!]
Print a report of responses.
((eq? nessage 'report!)
(di splay "Yes appeared ")
(display (vector-ref counts 0))
(display " times.")
(new i ne)
(display "No appeared ")
(display (vector-ref counts 1))
(display " times.")
(newine))
(el se
(error "#<yesno>: unrecogni zed nessage")))))))

For example,

> (define yn (make-yesno))
> (yn ':yes!)

> (yn ':report!)

Yes appeared 1 tines.

No appeared O times.

)

> (yn ':no!)
> (yn ':no!)
> (yn ':no!)
> (yn ':report!)
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Yes appeared 1 tines.
No appeared 3 times.
> (yn ':no!)
> (yn ':no!)

Student Objects

At the beginning of this reading, we considered one mechanism for representing students: a vector with
associated procedures. Now that you've seen how to build objects, we can consider how to represent
students as objects. However, that is a subject for another day.
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