
Fundamentals of Computer Science I (CS151.02 2007S)

Manipulating Images with Script-Fu
Summary: We consider how to use Script-Fu to manipulate existing images. Along the way, we discover
a number of useful Scheme techniques that are generally classified as higher-order programming.

Contents:

Introduction
Getting and Setting Colors
Modifying Images
Anonymous Color Transformers
Building Color Transformers
Sectioning
Combining Transformers
From Component Functions to Transformers

Introduction
In our initial explorations of the GIMP and Script-Fu, we have developed a number of techniques for
creating new images, including parameterizing images, using randomness to create interesting variants of
an image, and even drawing in a grid-like pattern. While this emphasis on creating images has been
interesting and fun (or so we hope), it is only one kind of image manipulation that regularly happens in
drawing programs.

In fact, many designers use the GIMP and Photoshop not just to create new images, but also to manipulate
existing images. You already know some simple ways of manipulating images (well, you know how to
draw on top of an image), but we should consider some other techniques. In this reading, we will consider
one basic techniques: manipulating images by changing individual colors at individual locations.

Getting and Setting Colors
As you’ve observed, the images we draw in the GIMP are, in effect, a simple grid of color values. At each
(x,y) position, the image contains a particular color. In order to modify existing images, we need a way to
get and set those colors.

The library hog.scm contains simple procedures for both activities. The (get-color-at img x
y) procedure returns the color value for the position (x,y) in img. The (set-color-at! img x y)
procedure changes the color value for position (x,y) in img. (Unfortunately, set-color-at! only
works well for images that are not yet displayed.)

(In case you’re wondering why we called it hog, one silly reason would be to honor our region. However,
the real reason is that it is short for “higher-order graphics”.)

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2007S/

While you can use the color lists that you’ve learned about in previous readings, it turns out that the GIMP
works slightly more efficiently if we use a different representation for colors. (get-color-at returns
this alternate representation. If you’re prefer a list, use color->list on the result.) We can extract the
red, blue, and green components using the procedures red, blue, and green. For example,

> (define col (get-color-at img 20 10))
> (color->list col)
(32 128 64)
> (red col)
32
> (green col)
128
> (blue col)
64

We build one of these alternate kinds of colors with the rgb function.

(set-color-at! img 20 10 (rgb 128 128 128))

Modifying Images
So, how do we use these procedures to manipulate an image? One straightforward strategy is to grab the
color value at each position, manipulate it somehow, and then set the color at that position to the changed
value. Of course, you don’t want to bother writing the procedure to do that, so we’ll just use one that has
been written previously, modify-image!. The modify-image! procedure takes two parameters: a
color transformer and an image to modify. The image is, as you might expect, an image. The color
transformer is a procedure that takes a color as a parameter and returns a new color as a result.

For example, a common transformation is to reduce the amount of red by 10%. We might write this
transformation as follows:

(define red-90
 (lambda (color)
 (rgb (* .9 (red color)) (green color) (blue color))))

We can apply this procedure everywhere in the image using the modify-image procedure:

> (define sam (load-image "Sam.jpg"))
> (modify-image! red-90 sam)
> (show-image sam)

In this example, we have scaled the red component by a certain amount. However, there is a debate in the
image processing community as to whether it is better to scale components or to change them by a fixed
amount. For example, we might reduce the red component by 32, no matter what that component is.

(define reduce-red
 (lambda (color)
 (rgb (- (red color) 32) (green color) (blue color))))

2

In the laboratory, you’ll explore which of these techniques you prefer.

What other things might we do to an image? Another common transformation is to turn the image into
greyscale, either by averaging the three color values or by doing a weighted average, based on the relative
brightness of the three colors.

(define greyscale-simple
 (lambda (color)
 (let ((ave (/ (+ (red color) (green color) (blue color)) 3)))
 (rgb ave ave ave))))

(define greyscale-better
 (lambda (color)
 (let ((ave (+ (* 0.299 (red color)) (* 0.587 (green color)) (* 0.114 (blue color)))))
 (rgb ave ave ave))))

Another fun transformation is to rotate the three color components.

(define rotate-components
 (lambda (color)
 (rgb (green color) (blue color) (red color))))

In the laboratory, you will have the opportunity to use these procedures as well as other related
procedures.

Anonymous Color Transformers
One disadvantage of the reduce-red and red-90 procedures above is that they have a fixed amount
that we’re changing the components. If we want a different change (say to reduce the red component by 16
rather than 32, or to scale the red component by 1.1 rather than 0.9), we either have to write a new
procedure (which may be difficult to name) or we have to change these procedures (which will be
awkward in the case of red-90). In either case, we’ll then need to spend additional effort to tell Script-Fu
that we’ve made changes.

Is there an alternative? Certainly. When we’re just experimenting with possible values, it is much easier to
use the anonymous procedures we’ve encountered previously. For example, suppose we want to scale the
blue component by 110%. Rather than writing blue-110, we can simply do the following:

> (define sam (load-image "Sam.jpg"))
> (modify-image! (lambda (color) (rgb (red color) (* 1.1 (blue color)) (green color)) sam)
> (show-image sam)

That technique also makes it easy to combine simple transformations. For example, we might increment
green and decrement red with

> (define sam (load-image "Sam.jpg"))
> (modify-image! (lambda (color) (rgb (- (red color) 32) (blue color) (+ (green color) 16)) sam)
> (show-image sam)

3

Building Color Transformers
One difficulty that some people encounter with using the anonymous procedures above is that they get
fairly long, which makes them hard to type in the Script-Fu console. Is there something better we can do?
Yes, we can write procedures that generate transformers. What does that mean? It means that we’ll write
procedures that return other procedures as values.

Consider the problem of building a variety of procedures that add different amounts to the red component.
Here are a few such procedures.

(define redder-32
 (lambda (color)
 (rgb (+ (red color) 32) (green color) (blue color))))
(define redder-16
 (lambda (color)
 (rgb (+ (red color) 16) (green color) (blue color))))
(define lessred-16
 (lambda (color)
 (rgb (+ (red color) -16) (green color) (blue color))))

As you might expect, these procedures are incredibly similar, differing only in the value that is added to
the red component. Rather than writing all of these variants, we could make the value to be added a
parameter to some procedure, say change-red, that also takes an image as a parameter.

;;; Procedure:
;;; change-red
;;; Parameters:
;;; amt, an integer in the range -255 to 255 [unverified]
;;; color, the color to be transformed.
;;; Purpose:
;;; Build a new color by adding amt to the red component of color
;;; Produces:
;;; new-color, a color
;;; Preconditions:
;;; (none)
;;; Postconditions:
;;; For any color,
;;; (red new-color) = (+ (red color) amt)
;;; unless the sum is less than 0 or greater than 255, in
;;; which case new-color is 0 or 255, respectively.
(define change-red
 (lambda (amt color)
 (rgb (+ (red color) amt) (green color) (blue color)))))

Now we can define functions like redder-32 in terms of change-red.

4

> (define grey (rgb 128 128 128))
> (define redder-32 (lambda (color) (change-red 32 color)))
> (red (redder-32 grey))
160
> (blue (redder-32 grey))
128
> (define lessred-32 (lambda (color) (change-red -32)))
> (red (lessred-32 grey))
96
> (green (lessred-32 grey))
128

Of course, there’s no need for us to name these created procedures. Just as we can use anonymous
procedures whenever we need a procedure, so can we use these built procedures. Here’s one simple
example

> (red ((lambda (color) (more-red 32 color)) grey))
192

More importantly, we can use these procedures as parameters to the modify-image! procedure.

> (define sam (load-image "Sam.jpg"))
> (modify-image! (lambda (color) (more-red 32 color)) sam)
> (show-image sam)

Is this less verbose than what we’d been writing before? It’s certainly more convenient than defining
redder-32, redder-16, and similar functions. It’s also shorter than the following:

> (define sam (load-image "Sam.jpg"))
> (modify-image! (lambda (color) (+ 32 (red color)) (green color) (blue color)) sam)
> (show-image sam)

Can we do better? Certainly. One strategy is to curry the change-red procedure. When we curry a
procedure, we put each parameter is a separate lambda.

;;; Procedure:
;;; redder
;;; Parameters (Curried):
;;; amt, an integer in the range -255 to 255 [unverified]
;;; color, the color to be transformed.
;;; Purpose:
;;; Build a new color by adding amt to the red component of color
;;; Produces:
;;; new-color, a color
;;; Preconditions:
;;; (none)
;;; Postconditions:
;;; For any color,
;;; (red new-color) = (+ (red color) amt)
;;; unless the sum is less than 0 or greater than 255, in
;;; which case new-color is 0 or 255, respectively.
(define redder
 (lambda (amt)
 (lambda (color)
 (change-red amt color))))

5

The structure of this procedure may seem a bit odd, because it has two nested lambdas, one for the amount
and one for the color. In fact, we apply curried two-parameter procedures slightly differently than we
apply normal two-parameter procedures. You may recall that we apply change-red by writing
something like (redder 32 grey). We apply redder by first applying it to the number and then
applying the result to the color, as in ((redder 32) grey).

> (color->list ((redder 32) grey))
(160 128 12)

Does this new form help us? Not much, until we realize that there are two ways to think about procedures
with nested lambdas: We can think about them as taking two parameters (as in the example above).
Alternately, we can think of them as procedures that take one value as a parameter and return a procedure
that takes the other value as a parameter.

;;; Procedure:
;;; redder
;;; Parameters:
;;; amt, an integer in the range -255 to 255 [unverified]
;;; Purpose:
;;; Build a color transformer.
;;; Produces:
;;; make-redder, a color transformer.
;;; Preconditions:
;;; (none)
;;; Postconditions:
;;; For any color,
;;; (red (make-redder color)) = (red color) + amt
;;; unless the sum is less than 0 or greater than 255, in
;;; which case the result is 0 or 255, respectively.
(define redder
 (lambda (amt)
 (lambda (color)
 (change-red amt color))))

In this case, we can think of the outer lambda as asking for the parameter to redder. The inner lambda
describes the parameter to the procedure the redder returns.

For example,

> (define grey (rgb 128 128 128))
> (define redder-32 (redder 32))
> (color->list (redder-32 grey))
(160 128 128)
> (define lessred-32 (redder -32))
> (color-> list (lessred-32 grey))
(96 128 128)

The hog.scm library contains redder, greener, and bluer. In the corresponding laboratory, you
will have the opportunity to write some similar procedures, such as scale-red.

6

Sectioning
If you think about it, once we’ve defined change-red, change-blue, and change-green, the
procedures redder, bluer, and greener are going to be very similar. Each takes a two-parameter
procedure and a value as parameters, and creates a new procedure whose body fills in the first parameter
of the two-parameter procedure.

In fact, It turns out that filling in the first parameter of a two-parameter procedure is a fairly common
activity. For example, here is a procedure that, given an image as a parameter, converts the image to
greyscale.

;;; Procedure
;;; convert-to-greyscale!
;;; Parameters:
;;; image, an image
;;; Purpose:
;;; Converts the image to greyscale.
;;; Produces:
;;; (nothing)
;;; Preconditions:
;;; (none)
;;; Postconditions:
;;; image is now in greyscale (that is, for each position, the red,
;;; green, and blue components are identical).
;;; The color at each position has approximately the same brightness
;;; as it did prior to the conversion.
(define convert-to-greyscale!
 (lambda (image)
 (modify-image! greyscale-better image)))

The increment procedure, which adds one to its parameter, is another instance of this pattern.

(define increment
 (lambda (val)
 (+ 1 val)))

In effect, increment turns the two-parameter + procedure into a one-parameter procedure by filling in the
first parameter.

The process of filling in the first parameter of a two-parameter procedure is so common that it may be
worth refactoring all of these procedures to create a common procedure. That common procedure is
typically called left-section or l-s.

;;; Procedure:
;;; left-section
;;; l-s
;;; Parameters:
;;; binproc, a two-parameter procedure
;;; left, a value
;;; Purpose:
;;; Creates a one-parameter procedure by filling in the first parameter
;; of binproc.
;;; Produces:

7

;;; unproc, a one-parameter procedure
;;; Preconditions:
;;; left is a valid first parameter for binproc.
;;; Postconditions:
;;; (unproc right) = (binproc left right)
(define left-section
 (lambda (binproc left) ; Parameters to left-section
 (lambda (right) ; Parameters to unproc
 (binproc left right))))
(define l-s left-section)

A fairly short procedure, but it has many implications. First, it simplifies many definitions. Consider some
of the ones we’ve just written. We can rewrite them as follows

(define bluer (lambda (val) (l-s change-blue val)))
(define convert-to-greyscale! (l-s modify-image! greyscale-better))
(define increment (l-s + 1))

Note that l-s lets us define some procedures without even writing lambdas! It also makes it easier to do
without redder, bluer, and greener. After all, (redder amt) is just (l-s change-red
amt). Since the latter is almost as short as the former, we might consider writing it instead.

> (define sam (load-image "Sam.jpg"))
> (modify-image! (l-s change-red 128) sam)
> (show-image sam)
i

Combining Transformers
While redder, greener, bluer, and quite useful, they can be limiting. For example, suppose we want
a procedure that decreases red by 32 and increases green by 16. What do we do? One possibility is to look
at the context and to simply apply the two transformations in sequence.

> (define sam (load-image "Sam.jpg"))
> (modify-image! (l-s change-red -32) sam)
> (modify-image! (l-s change-green 16) sam)
> (show-image sam)

However, that is a bit inconvenient and a bit verbose. Is there a better strategy? Certainly. We can rely on
a process that you may remember from your days in Mathematics, composition. The composition of two
functions, f and g is a new function. The new function gives the same result as you’d get from first
applying g to the parameter and then applying f to that result. For example, if you compose the square
function with the function that increments by 1, you get a function that adds 1 and then squares. (That
function, when applied to 3, gives 16; when applied to 7, it gives 64.)

We can define compose in Scheme using a literal translation of that description (well, of a modification
of that description).

“compose is”: (define compose
“a function of two parameters, f and g”: (lambda (f g)
“that returns a new function of one parameter”: (lambda (x) ...)

8

“that applies g and then applies f”: (f (g x))

Putting it all together:

;;; Procedures:
;;; compose
;;; o
;;; Parameters:
;;; f, a procedure
;;; g, a procedure
;;; Purpose:
;;; Compose f and g.
;;; Produces:
;;; fog, a procedure
;;; Preconditions:
;;; f can be applied to the results returned by g.
;;; Postconditions:
;;; (fog x) = (f (g x))
(define compose
 (lambda (f g)
 (lambda (x)
 (f (g x)))))
(define o compose)

Now we can use this in a variety of ways. For example, here’s an attempt to convert an image to greyscale
and then make it a bit bluer.

> (define sam (load-image "Sam.jpg"))
> (modify-image! (compose (bluer 32) greyscale-better))
> (show-image sam)

We can also use composition in everyday computation.

> (define inc-and-square (compose square increment))
> (inc-and-square 3)
16

From Component Functions to Transformers
You may have noted a slight disconnect between this approach to image manipulation and the approach
you saw when dealing with color grids. In particular, when we worked with color grids, we wrote
functions that computed each of the three color components separately. Can we do the same here?
Certainly. In this case, the component functions will take colors, rather than points, as parameters.

;;; Procedure:
;;; color-transformer
;;; Parameters:
;;; redfunc, a function from colors to integers in the range 0..255.
;;; greenfunc, a function from colors to integers in the range 0-..255.
;;; bluefunc, a function from colors to integers in the range 0-..255.
;;; Purpose:
;;; Combine the three functions into a color transformer.
;;; Produces:
;;; transform, a function from colors to colors.

9

;;; Preconditions:
;;; (none)
;;; Postconditions:
;;; (transform color) =
;;; (rgb (redfunc color) (greenfunc color) (bluefunc color)))
(define color-transformer
 (lambda (redfunc greenfunc bluefunc)
 (lambda (color)
 (rgb (redfunc color) (greenfunc color) (bluefunc color)))))
(define c-t color-transformer)

Why is this useful? It certainly simplifies the definition of rotate-components:

> (define rotate-components (c-t green blue red))
> (color->list (rotate-components (rgb 32 64 128)))
(64 128 32)

In fact, color-transformer provides an alternative to compose for building compound
transformers. Consider the following way to change red by 32

and blue by -16:

> (define sam (load-image "Sam.jpg"))
> (modify-image! (c-t (compose (l-s + 32) red) (compose (l-s + -16) green) blue) sam)
> (show-image sam)

Copyright © 2007 Samuel A. Rebelsky. This work is licensed under a Creative Commons
Attribution-NonCommercial 2.5 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

10

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Manipulating Images with Script-Fu
	Introduction
	Getting and Setting Colors
	Modifying Images
	Anonymous Color Transformers
	Building Color Transformers
	Sectioning
	Combining Transformers
	From Component Functions to Transformers

