Fundamentals of Computer Science I (CS151.02 2007S)

Naming Values with Local Bindings

Summary: In this laboratory, you will ground your understanding of the basic techniques for naming values and procedures in Scheme, let and let*.

Contents:

- **Exercises**
 - Exercise 1: Evaluating let
 - Exercise 2: Nesting Lets
 - Exercise 3: Simplifying Nested Lets
 - Exercise 4: Viewing Bindings
 - Exercise 5: Ordering Bindings
 - Exercise 6: Ordering Bindings, Revisited
 - Exercise 7: Closest to Zero
 - Exercise 8: Access to Local Procedures
 - Exercise 9: An Alternate Approach
 - Exercise 10: Finding the Longest Element List
 - Exercise 11: Alternate Techniques
- **For Those With Extra Time**
 - Extra 1: Another Alternative
 - Extra 2: Checking Preconditions

Exercises

Exercise 1: Evaluating let

What are the values of the following let-expressions? You may use DrScheme to help you answer these questions, but be sure you can explain how it arrived at its answers.

a.

```scheme
(let ((tone "fa")
      (call-me "ai"))
  (list call-me tone "1" tone))
```

b.

```scheme
(let ((total (+ 8 3 4 2 7)))
  (let ((mean (/ total 5)))
    (* mean mean)))
```
c.

```scheme
(let ((inches-per-foot 12)
       (feet-per-mile 5280))
  (let ((inches-per-mile (* inches-per-foot feet-per-mile)))
    (* inches-per-mile inches-per-mile)))
```

Exercise 2: Nesting Lets

Write a nested let-expression that binds a total of five names, alpha, beta, gamma, delta, and epsilon, with alpha bound to 9387 and each subsequent name bound to a value twice as large as the one before it. That is, beta should be twice as large as alpha, gamma twice as large as beta, and so on. The body of the innermost let-expression should then compute the sum of the values of the five names.

Your result will look something like

```scheme
(let (((...))
       (let (((...))
             (let (((...))
                   (let (((...))
                         (let (((...))
                               (....))))))))

**Exercise 3: Simplifying Nested Lets**

Write a let*-expression equivalent to the let-expression in the previous exercise.

**Exercise 4: Viewing Bindings**

The file
/home/rebelsky/Web/Courses/CS151/2007S/Examples/verbose-bindings.ss contains alternative versions of define, let, and let* (named verbose-define, verbose-let, and verbose-let*).

a. Load this file with the following Scheme command.

```scheme
(load "'/home/rebelsky/Web/Courses/CS151/2007S/Examples/verbose-bindings.ss")
```

b. Rewrite the examples from Exercise 1 to use verbose-let.

c. Rewrite your code from Exercise 2 to use verbose-let.

d. Rewrite your code from Exercise 3 to use verbose-let*.
Exercise 5: Ordering Bindings

In the reading, we noted that it is possible to move bindings outside of the lambda in a procedure definition. In particular, we noted that the first of the two following versions of years-to-seconds required recomputation of seconds-per-year every time it was called while the second required that computation only once.

```
(define years-to-seconds-a
 (lambda (years)
 (let* ((days-per-year 365.24)
 (hours-per-day 24)
 (minutes-per-hour 60)
 (seconds-per-minute 60)
 (seconds-per-year (* days-per-year hours-per-day
 minutes-per-hour seconds-per-minute))
 (* years seconds-per-year))))

(define years-to-seconds-b
 (let* ((days-per-year 365.24)
 (hours-per-day 24)
 (minutes-per-hour 60)
 (seconds-per-minute 60)
 (seconds-per-year (* days-per-year hours-per-day
 minutes-per-hour seconds-per-minute)))
 (lambda (years)
 (* years seconds-per-year))))
```

a. Confirm that years-to-seconds-a does, in fact, recompute the values each time it is called. (You might, for example, replace let* by verbose-let*.)

b. Confirm that years-to-seconds-b does not recompute the values each time it is called. (Again, replace the let* by verbose-let*.)

c. Given that years-to-seconds-b does not recompute each time, when does it do the computation? (Consider when you see the messages.)

Exercise 6: Ordering Bindings, Revisited

You may recall that we defined a procedure to compute the roots of a quadratic polynomial as follows:

```
(define roots
 (lambda (a b c)
 (let ((negative-b (- b))
 (square-root-of (sqrt (- (* b b) (* 4 a c))))
 (two-a (* 2 a)))
 (list (/ (+ negative-b square-root-of) two-a)
 (/ (- negative-b square-root-of) two-a))))
```

You might be tempted to move the let clause outside the lambda, just as we did in the previous exercise. However, as we noted in this reading, this reordering will fail.
a. Verify that it will not work to move the `let` before the lambda, as in

```scheme
(define roots
 (let ((negative-b (- b))
 (square-root-of (sqrt (- (* b b) (* 4 a c))))
 (two-a (* 2 a)))
 (lambda (a b c)
 (list (/ (+ negative-b square-root-of) two-a)
 (/ (- negative-b square-root-of) two-a))))
)
```

b. Explain, in your own words, why this fails (and why it should fail).

**Exercise 7: Closest to Zero**

In a recent laboratory, you wrote a procedure that took as parameters a list of real numbers and identified the number in that list that was closest to zero. Those of you who didn’t want to use any sort of helper wrote something like the following:

```scheme
(define closest-to-zero
 (lambda (lst)
 (cond
 ; If there’s only one element in the list, it’s closest to zero
 ((null? (cdr lst)) (car lst))
 ; If the current element is closer to zero than the closest
 ; remaining thing, use that
 ((< (abs (car lst)) (abs (closest-to-zero (cdr lst))))
 (car lst))
 ; Otherwise, use the thing in the remainder closest to zero
 (else (closest-to-zero (cdr lst)))))))
```

There is a hidden difficulty here: In some cases, we do two recursive calls, rather than one recursive call. From one perspective, that doesn’t seem like a lot. However, it can be quite costly.

a. Add the following lines to `closest-to-zero`, right before the `cond` statement.

```scheme
(display (list 'closest-to-zero lst))
(newline)
```

b. Find the number closest to zero in the list `(-1 -2 5 11 23 -45)`. How many recursive calls are there?

c. Suppose we wanted to find the number closest to zero in the list `(-45 23 11 5 -2 -1)`. How many recursive calls would you expect to see?

d. Check your answer to the previous subproblem experimentally. If the result does not match your expectation, explain the difference. (In fact, if the number of recursive calls is different than the number for b, explain the difference.)

e. Here’s a slightly different version of the program, using `let` to name the recursive call.
(define closest-to-zero
  (lambda (lst)
    (if (null? (cdr lst)) (car lst)
      (let ((closest-remaining (closest-to-zero (cdr lst))))
        (if (< (abs (car lst)) (abs closest-remaining))
            (car lst)
            closest-remaining))))
)

Check to make sure that it works.

f. Insert lines to print out a list similar to that in step a.

g. Suppose we want to find the number closest to zero in the list (-1 -2 5 11 23 -45). How many recursive calls do you expect? Try the command. How many recursive calls are there?

h. Suppose we wanted to find the number closest to zero in the list (-45 23 11 5 -2 -1). How many recursive calls would you expect to see? Try the command. How many recursive calls are there.

i. Explain the differences between c&d and g&h.

**Exercise 8: Access to Local Procedures**

Consider the following procedure that squares all the values in a list.

;;;; Procedure:
;;;;   square-values
;;;; Parameters:
;;;;   lst, a list of numbers of the form (num_1 num_2 ... num_n)
;;;; Purpose:
;;;;   Squares all the values in lst.
;;;; Produces:
;;;;   list-of-squares, a list of numbers
;;;; Preconditions:
;;;;   [Standard]
;;;; Postconditions:
;;;;   list-of-squares has the form (square_1 square_2 ... square_n)
;;;;   For all i, square_i is the square of num_i (that is num_i * num_i).
(define square-values
  (lambda (lst)
    (let ((square (lambda (val) (* val val))))
      (if (null? lst)
          null
          (cons (square (car lst)) (square-values (cdr lst)))))))

a. Verify that square-values works correctly.

b. Try to execute square outside of square-values. Explain what happens.

c. Replace the let with a verbose-let. Then square a list of five values. How many times does square get bound?
Exercise 9: An Alternate Approach

Here’s a slightly different version of square-values.

\begin{verbatim}
(define square-values
 (let ((square (lambda (val) (* val val)))
   (lambda (lst)
     (if (null? lst)
       null
       (cons (square (car lst)) (square-values (cdr lst)))))))
\end{verbatim}

a. Verify that square-values works correctly.

b. Try to execute square outside of square-values. Explain what happens.

c. Replace the \texttt{let} with a \texttt{verbose-let}. Then square a list of five values. How many times does square get bound? When does it get called?

Exercise 10: Finding the Longest Element List

Here is a procedure that takes a non-empty list of lists as an argument and returns the longest list in the list (or one of the longest lists, if there is a tie).

\begin{verbatim}
;;; Procedure: ;;;    longest-list-in-list ;;; Parameters: ;;;    los, a list of lists ;;; Purpose: ;;;    Finds one of the longest lists in los. ;;; Produces: ;;;    longest, a list ;;; Preconditions: ;;;    los is a nonempty list. ;;;    every element of los is a list. ;;; Postconditions: ;;;    Does not affect los. ;;;    Returns an element of los. ;;;    No element of los is longer than longest. That is, ;;;    For each lst in los, (length los) >= (length lst). (define longest-list-in-list
  (lambda (los)
    ; If there is only one list, that list must be the longest. (if (null? (cdr los))
      (car los)
    ; Otherwise, take the longer of the first list and the ; longest remaining list. (longer-list (car los) (longest-list-in-list (cdr los))))))
\end{verbatim}

This definition of the \texttt{longest-list-in-list} procedure includes a call to the \texttt{longer-list} procedure, which returns the longer of two given lists:
;;; Procedure:  
;;;   longer-list  
;;; Parameters: 
;;;   left, a list  
;;;   right, a list  
;;; Purpose:  
;;;   Find the longer of left and right.  
;;; Produces: 
;;;   longer, a list  
;;; Preconditions: 
;;;   Both left and right are lists.  
;;; Postconditions: 
;;;   longer is a list.  
;;;   longer is either equal to left or to right.  
;;;   (>= (length longer) (length left))  
;;;   (>= (length longer) (length right))
(define longer-list  
  (lambda (left right)  
    (if (<= (length right) (length left))  
        left  
        right))))

Revise the definition of longest-list-in-list so that the name longer-list is bound to the procedure that it denotes only locally, in a let-expression.

**Exercise 11: Alternate Techniques**

Note that there are at least two possible ways to do the previous exercise: The definiens of longest-list-in-list can be a lambda-expression with a let-expression as its body, or it can be a let-expression with a lambda-expression as its body. That is, it can take the form

(define longest-list-in-list  
  (let (...)  
    (lambda (los)  
      ...))))

or the form

(define longest-list-in-list  
  (lambda (los)  
    (let (...)  
      ...)))

a. Define longest-list-in-list in whichever way that you did not define it for the previous exercise.

b. Does the order of nesting affect what happens when the procedure is invoked? You may want to use verbose-let to help you answer this question.

c. If there is a difference, which arrangement is better? Why?
For Those With Extra Time

Extra 1: Another Alternative

The two definitions of longest-of-list you came up with in the previous exercises are not the only alternatives you have in placing the let. Since longer-list is only needed in the recursive case, you can place the let there.

(define longest-list-in-list
  (lambda (los)
    ; If there is only one list, that list must be the longest.
    (if (null? (cdr los))
        (car los)
    ; Otherwise, take the longer of the first list and the
    ; longest remaining list.
        (let ((longer-list
            (lambda (left right)
              (if (<= (length right) (length left))
                  left
                right)))))
        (longer-list (car los) (longest-list-in-list (cdr los))))))

Including the original definition (in which longer-list is bound with define), you’ve now seen or written four variants of longest-list-in-list. Which do you prefer? Why?

Extra 2: Checking Preconditions

Extend your favorite version of longest-list-in-list so that it verifies its preconditions (i.e., that los only contains lists and that los is nonempty). If the preconditions are not met, your procedure should return #f.

It is perfectly acceptable for you to check each list element in turn to determine whether or not it is a list, rather than to check them all at once, in advance.