
Fundamentals of Computer Science I: Media Computing (CS151.02 2007F)

Laboratory: Recursion, Revisited
Summary: In this laboratory, you will continue your exploration of recursion.

Contents:

Preparation
Exercises

Exercise 1: Appending Lists
Exercise 2: The Brightest Color
Exercise 3: The Brightest Grey
Exercise 4: The Brightest Color, Revisited
Exercise 5: The Brightest Color, Re-Revisited
Exercise 6: Reflect!
Exercise 7: The Closest Color
Exercise 8: Checking for Brightness

For Those With Extra Time
Extra 1: Templates

Notes
Notes on Problem 2: The Brightest Color
Notes on Problem 3: The Brightest Grey
Notes on Problem 4: The Brightest Color, Revisited
Notes on Problem 5: The Brightest Color, Re-Revisited

Reference:

Preparation
a. Create a list of a dozen or so colors and call it my-colors. (Put this definition in the definitions pane.)

b. Create a list of the names of all of the colors with green in the name with

(define green-names (cname.list "green"))

c. Create a list of the RGB equivalents of all of those colors with

(define greens (map cname->rgb green-names))

d. Create a list of a few shades of grey with

(define greys
 (map (lambda (n) (rgb.new n n n))
 (list 0 16 32 48 64 96 112 128 144 160 176 192 208 224 240 255)))

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2007F/

e. Add the following procedures to your definitions pane.

;;; Procedure:
;;; rgb.bright?
;;; Parameters:
;;; color, an RGB color
;;; Purpose:
;;; Determine if the color appears bright.
;;; Produces:
;;; bright?, a Boolean
(define rgb.bright?
 (lambda (color)
 (< 66 (rgb.brightness color))))

;;; Procedure:
;;; rgb.brightness
;;; Parameters:
;;; color, an RGB color
;;; Purpose:
;;; Computes the brightness of color on a 0 (dark) to 100 (bright) scale.
;;; Produces:
;;; b, an integer
;;; Preconditions:
;;; color is a valid RGB color. That is, each component is between
;;; 0 and 255, inclusive.
;;; Postconditions:
;;; If color1 is likely to be perceived as brighter than color2,
;;; then (brightness color1) > (brightness color2).
(define rgb.brightness
 (lambda (color)
 (round (* 100 (/ (+ (* .30 (rgb.red color))
 (* .59 (rgb.green color))
 (* .11 (rgb.blue color)))
 255)))))

;;; Procedure:
;;; rgb.distance
;;; Parameters:
;;; color1, an RGB color
;;; color2, an RGB color
;;; Purpose:
;;; Finds the distance between color1 and color2 using some metric.
;;; Produces:
;;; distance, an integer
(define rgb.distance
 (lambda (color1 color2)
 (+ (square (- (rgb.red color1) (rgb.red color2)))
 (square (- (rgb.green color1) (rgb.green color2)))
 (square (- (rgb.blue color1) (rgb.blue color2))))))

2

Exercises

Exercise 1: Appending Lists

You may recall that the procedure append takes as parameters two lists, and joins the two lists together.
Let’s generalize that procedure. Write a procedure, lists.join, that, given a list of lists as a parameter,
joins each of the member lists together using append.

> (lists.join (list (list 1 2 3)))
(1 2 3)
> (lists.join (list (list 1 2 3) (list 10 11 12)))
(1 2 3 10 11 12)
> (lists.join (list (list 1 2 3) (list 10 11 12) (list 20 21)))
(1 2 3 10 11 12 20 21)
> (lists.join (list null (list 1 2 3) null null null null (list 100 99 98) null))
(1 2 3 100 99 98)

Exercise 2: The Brightest Color

a. Write a procedure, (rgb.brightest colors), that, given a list of colors, finds the brightest color
in that list. In writing your procedure, use the following structure:

Base case: If the list has only one element, that element is the brightest.
First recursive case: If the first element of the list is brighter than the brightest color in the rest of the
list, use the first element of the list.
Second recursive case: If the first element of the list is not brighter than the brightest color in the rest
of the list, use the brightest color in the rest of the list. (Note that if the tests for the base case and the
first recursive case fail, the test for this case must hold.)

b. When you are done, compare your answer to the solution that appears in the notes on this problem

c. Save your work!

d. Test this procedure on your list of colors, my-list.

e. Test this procedure on greens. For example, you might write

(rgb->cname (rgb.brightest greens))

f. What do you expect to have happen if you call this procedure on the empty list of colors?

g. Experimentally check your answer to the previous step.

h. Test this procedure on a few other lists.

3

Exercise 3: The Brightest Grey

a. Determine what happens when rgb.brightest is called on greys.

b. Determine what happens when rgb.brightest is called on (reverse greys).

c. Did you notice any difference in the behavior (if not the result) of the two calls?

d. You should have observed that one of the two calls was much faster. Hypothesize as to why.

Exercise 4: The Brightest Color, Revisited

Is your solution to the previous exercise the only way to write a recursive procedure to find the brightest
color in a list? Certainly not! For example, we might write something that follows the pattern of
spot-list.leftmost.

(define spot-list.leftmost
 (lambda (spots)
 (if (null? (cdr spots))
 (car spots)
 (spot.leftmost (car spots) (spot-list.leftmost (cdr spots))))))

What’s the key idea in this procedure (other than using recursion and having a singleton base case)? We
use a single procedure, spot.leftmost, to handle two cases: The recursive case in which the first
element is to the left of the remaining elements, and the case in which the first element is not to the left of
the remaining elements.

a. To use this pattern, you’ll need to create the equivalent of spot.leftmost, except that it finds the
brighter of two colors. Write a procedure, (rgb.brighter color1 color2) that returns the
brighter of color1 and color2.

b. Finish your definition of rgb.brightest by replacing the appropriate parts of the aforementioned
definition.

c. Compare your answer to the one that appears in the notes on this problem.

d. Save your work!

e. Determine what happens when the procedure is called on the empty list.

f. Determine what happens when the procedure is called on a singleton list.

g. Determine what happens when the procedure is called on greens.

h. Determine what happens when the procedure is called on greys.

i. Determine what happens when the procedure is called on (reverse greys).

4

Exercise 5: The Brightest Color, Re-Revisited

In the reading and laboratory on tail recursion, we used a very different technique for writing recursive
procedures: In addition to passing along a list that we were recursing over, we also passed along an
intermediate result, which we used when we hit the base case. Let’s try rewriting rgb.brightest that
way.

(define rgb.brightest
 (lambda (colors)
 (rgb.brightest-helper (car colors) (cdr colors))))
(define rgb.brightest-helper
 (lambda (brightest-so-far remaining-colors)
 (if (null? remaining-colors)
 brightest-so-far
 (rgb.brightest-helper ______________________
 (cdr remaining-colors)))))

a. Finish this definition.

b. Compare it to the definition in the notes on this problem.

c. Test it on your list of colors (my-list) and the list we generated algorithmically (many-colors).

Exercise 6: Reflect!

You’ve now come up with (or read) three definitions of rgb.brightest. Which do you prefer? Why?

Exercise 7: The Closest Color

Write and test a procedure, (rgb.closest color colors), that finds the element of colors that is
closest to color.

Exercise 8: Checking for Brightness

a. Write a procedure, (all-bright? colors), that, given a list of colors, determines if all of the
colors are bright.

b. Write a procedure, (any-bright? colors), that, given a list of colors, determines if any of them
are bright.

For Those With Extra Time

Extra 1: Templates

Write your own “fill in the blanks” template for the three kinds of recursion covered in the three forms of
rgb.brightest.

5

Notes

Notes on Problem 2: The Brightest Color

Here’s a solution that matches the description given earlier.

(define rgb.brightest
 (lambda (colors)
 (cond
 ((null? (cdr colors))
 (car colors))
 ((> (rgb.brightness (car colors))
 (rgb.brightness (rgb.brightest (cdr colors))))
 (car colors))
 (else (rgb.brightest (cdr colors))))))

Notes on Problem 3: The Brightest Grey

You should have observed that finding the brightest color in (reverse greys) is significantly faster
than finding the brightest color in greys. Why should this be, particularly since the two lists have exactly
the same values? It turns out that the order of the elements makes a difference. In (reverse greys),
the elements are in order from brightest to darkest. In greys, the elements are in order from darkest to
brightest. So, in (rgb.brightest (reverse greys)), we always use the first recursive case.
However, in (rgb.brightest greys), we always use the second recursive case. That means that we
call rgb.brightest twice.

Why isn’t it the case that it’s only half as fast to do this call? Well, suppose we have a list of ten elements.
We recurse twice on a list of nine elements. Each of these recursive calls recurses twice on a list of eight
elements. That means that we’ve done four calls on lists of eight elements. Since each of these does two
calls on lists of seven elements, we do eight calls on lists of seven elements. Similarly, there are sixteen
calls on lists of six elements, thirty two on lists of five elements, and so on and so forth.

We will return to this efficiency issue later in the semester.

Notes on Problem 4: The Brightest Color, Revisited

Here’s a solution that matches the description given earlier.

(define rgb.brightest
 (lambda (colors)
 (if (null? (cdr colors))
 (car colors)
 (rgb.brighter (car colors) (rgb.brightest (cdr colors))))))

6

Notes on Problem 5: The Brightest Color, Re-Revisited

Here’s a solution that matches the description given earlier.

(define rgb.brightest
 (lambda (colors)
 (rgb.brightest-helper (car colors) (cdr colors))))
(define rgb.brightest-helper
 (lambda (brightest-so-far remaining-colors)
 (if (null? remaining-colors)
 brightest-so-far
 (rgb.brightest-helper
 (rgb.brighter brightest-so-far (car remaining-colors))
 (cdr remaining-colors)))))

Copyright © 2007 Janet Davis, Matthew Kluber, and Samuel A. Rebelsky. (Selected materials copyright
by John David Stone and Henry Walker and used by permission.) This material is based upon work
partially supported by the National Science Foundation under Grant No. CCLI-0633090. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation. This work is licensed under a
Creative Commons Attribution-NonCommercial 2.5 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

7

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Laboratory: Recursion, Revisited
	Preparation
	Exercises
	Exercise 1: Appending Lists
	Exercise 2: The Brightest Color
	Exercise 3: The Brightest Grey
	Exercise 4: The Brightest Color, Revisited
	Exercise 5: The Brightest Color, Re-Revisited
	Exercise 6: Reflect!
	Exercise 7: The Closest Color
	Exercise 8: Checking for Brightness

	For Those With Extra Time
	Extra 1: Templates

	Notes
	Notes on Problem 2: The Brightest Color
	Notes on Problem 3: The Brightest Grey
	Notes on Problem 4: The Brightest Color, Revisited
	Notes on Problem 5: The Brightest Color, Re-Revisited

