
Fundamentals of Computer Science I: Media Computing (CS151.02 2007F)

Laboratory: Writing More Complex Color
Transformations
Summary: In the past few laboratories, you’ve learned how to write filters using basic color
transformations and how to write your own color transformations. In the most recent reading, you’ve
learned about Scheme’s primary numeric procedures. In this lab, you will further explore these procedures
as you write some more complex color transformations.

Contents:

Preparation
Exercises

Exercise 1: Using Modulo
Exercise 2: Modulo, Revisited
Exercise 3: Trigonometric Transformations
Exercise 4: From Reals to Integers
Exercise 5: An Exponential Transformation

For Those with Extra Time
Extra 1: Rounding, Revisited

Explorations
Exploration 1: Modified Greyscale

Notes
Notes on Exercise 4: From Reals to Integers

Preparation
a. Load a moderate-sized image (no more than about 250x250) and name the loaded image source.

b. Create and show a new 3x3 image and name it canvas.

c. Zoom in on canvas.

d. Fill in the pixels of canvas as follows. Note that you may want to open this lab in a Web browser and
cut and paste.

(image.set-pixel! canvas 0 0 (rgb.new 192 0 0))
(image.set-pixel! canvas 1 0 (rgb.new 192 0 192))
(image.set-pixel! canvas 2 0 (rgb.new 0 0 192))
(image.set-pixel! canvas 0 1 (rgb.new 192 192 0))
(image.set-pixel! canvas 1 1 (rgb.new 0 192 192))
(image.set-pixel! canvas 2 1 (rgb.new 255 255 255))
(image.set-pixel! canvas 0 2 (rgb.new 0 192 0))
(image.set-pixel! canvas 1 2 (rgb.new 0 0 0))
(image.set-pixel! canvas 2 2 (rgb.new 192 192 192))

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2007F/

e. Create and show a new 17x1 image and name it blues.

f. Fill in the pixels of blues as follows.

(image.set-pixel! blues 0 0 (rgb.new 0 0 0))
(image.set-pixel! blues 1 0 (rgb.new 0 0 16))
(image.set-pixel! blues 2 0 (rgb.new 0 0 32))
(image.set-pixel! blues 3 0 (rgb.new 0 0 48))
(image.set-pixel! blues 4 0 (rgb.new 0 0 64))
(image.set-pixel! blues 5 0 (rgb.new 0 0 80))
(image.set-pixel! blues 6 0 (rgb.new 0 0 96))
(image.set-pixel! blues 7 0 (rgb.new 0 0 112))
(image.set-pixel! blues 8 0 (rgb.new 0 0 128))
(image.set-pixel! blues 9 0 (rgb.new 0 0 144))
(image.set-pixel! blues 10 0 (rgb.new 0 0 160))
(image.set-pixel! blues 11 0 (rgb.new 0 0 176))
(image.set-pixel! blues 12 0 (rgb.new 0 0 192))
(image.set-pixel! blues 13 0 (rgb.new 0 0 208))
(image.set-pixel! blues 14 0 (rgb.new 0 0 224))
(image.set-pixel! blues 15 0 (rgb.new 0 0 240))
(image.set-pixel! blues 16 0 (rgb.new 0 0 255))

Exercises

Exercise 1: Using Modulo

As the reading suggests, the modulo procedure computes a value much like the remainder, except that the
result is always the same sign as the second parameter, called the modulus. (So, when we use a positive
modulus, we get a positive result.) The reading also suggests that modulo provides an interesting
alternative to using max and min to limit the values of functions.

a. What value do you expect each of the following to produces?

> (modulo 254 256)
> (modulo 256 256)
> (modulo 257 256)
> (modulo 515 256)
> (modulo 2567 256)
> (modulo 0 256)
> (modulo -256 256)
> (modulo -257 256)
> (modulo -255 256)
> (modulo -1 256)

b. Check your answers experimentally, one at a time. If you find that any answers are incorrect, try to
figure out why (asking me or a tutor if necessary), and then rethink your remaining answers before
checking them experimentally.

c. Consider the following two named color transformations

2

(define my-double-1
 (lambda (color)
 (rgb.new (min (* 2 (rgb.red color)) 255)
 (min (* 2 (rgb.green color)) 255)
 (min (* 2 (rgb.blue color)) 255))))
(define my-double-2
 (lambda (color)
 (rgb.new (modulo (* 2 (rgb.red color)) 256)
 (modulo (* 2 (rgb.green color)) 256)
 (modulo (* 2 (rgb.blue color)) 256))))

Are there any pixels in canvas for which you expect the two transformations to behave differently? If so,
what difference do you expect?

d. Check your answer experimentally with

> (image.show (image.map my-double-1 canvas))
> (image.show (image.map my-double-2 canvas))

Exercise 2: Modulo, Revisited

As you may recall, the rgb.phaseshift procedure takes each component and does one of two things.
If the component is 128 or higher, it subtracts 128 from the component. If the component is less than 128,
it adds 128.

It is possible to implement rgb.phaseshift without using a conditional. (In fact, it is implemented
without a conditional.) How? Through a clever application of modulo.

a. Write your own version of rgb.phaseshift, called my-phaseshift.

b. Test my-phaseshift by applying it to each pixel in blues.

c. Test my-phaseshift by applying it to each pixel in canvas.

Exercise 3: Trigonometric Transformations

Don’t worry if you don’t know the meanings of the trigonometric functions for this exercise; the important
point is to get you to think about how you deal with different ranges of numbers.

As you may have noted, we can get some “interesting” effects by applying traditional functions in
untraditional ways. Let’s see if the trigonometric functions sin and cos produce any interesting effects.

Traditionally, we prefer that each of these functions takes as input a number between 0 and 2*pi. (Yes,
they work fine when the input is larger or smaller than that range, but we’ll still find it more convenient to
use that range.) Both functions return values between -1 and 1, inclusive.

If we are to use sin and cosine to transform color components, we’ll need to find a way to convert the
components, in the range 0 to 255 (inclusive) to a value in the range 0 to 2*pi, and the results back to a
number in the range 0 to 255.

3

a. Write and test a procedure, component-sin, that takes as input a number between 0 and 255 and,
using sin, computes a new number between 0 and 255. (You’ll need to convert the input to a value in the
range 0 to 255 and the result to a value in that range.)

b. Build a new version of blues using the following instruction:

(define newblues (image.map (lambda (color) (rgb.new (component-sin (rgb.red color)) (component-sin (rgb.green color)) (component-sin (rgb.blue color)))) blues))

c. What do you expect the result to look like?

d. Check your answer experimentally.

e. What do you expect to happen if you do something similar with source?

f. Check your answer experimentally.

Exercise 4: From Reals to Integers

This exercise does not require the construction or use of images or colors. Instead, it asks you to explore a
few of the standard Scheme numeric functions.

As the reading on numbers suggests, Scheme provides four functions that convert real numbers to nearby
integers: floor, ceiling, round, and truncate. The reading also claims that there are differences
between all four.

To the best of your ability, figure out what each does, and what distinguishes it from the other three. In
your tests, you should try both positive and negative numbers, numbers close to whole numbers and
numbers far from whole numbers. (Numbers whose fractional part is 0.5 are about as far from a whole
number as any real number can be.)

Once you have figured out answers, check, the notes on this problem.

Exercise 5: An Exponential Transformation

Consider the following somewhat similar functions:

(define f
 (lambda (component)
 (round (* 255 (expt (/ component 255) 3)))))
(define g
 (lambda (component)
 (round (/ (expt component 3) (expt 255 3)))))

a. Explain in your own words what these procedures seem to do to a color component (that is, a number
between 0 and 255).

b. Suppose we transform blues using these two functions, as follows:

4

(define flues (image.map (lambda (color) (rgb.new (f (rgb.red color)) (f (rgb.green color)) (f (rgb.blue color))) blues)))
(define glues (image.map (lambda (color) (rgb.new (g (rgb.red color)) (g (rgb.green color)) (g (rgb.blue color))) blues)))

How do you expect flues and glues to differ?

c. Check your answer experimentally.

For Those with Extra Time
If you have extra time left at the end of this lab, you might try the exploration below or you might try one
of these problems.

Extra 1: Rounding, Revisited

You may recall that we have a number of mechanisms for rounding real numbers to integers. But what if
we want to round not to an integer, but to only two digits after the decimal point? Scheme does not include
a built-in operations for doing so. Nonetheless, it is fairly straightforward.

Suppose we have a real value stored in r. Figure out how to change r so that it rounds to the nearest
hundredth. For example,

> (define r 22.71256)
> r
22.71256
___ ; fill in your instructions
> r
22.71
> (define r 10.7561)
> r
10.7561
___ ; fill in your instructions
> r
10.76

You may also want to express your instructions as a Scheme function.

Explorations

Exploration 1: Modified Greyscale

In one of the exercises, you saw that it is possible to use expt to compress one end of the spectrum of
colors and spread out another end of the spectrum. In a previous laboratory, you learned how to convert an
image to greyscale.

So, let’s put those two things together: First we’ll convert to greyscale and then we’ll use one of the
expt-based transformations.

5

What purpose might the combination serve?

Find an image for which the combination provides particularly interesting results.

Notes

Notes on Exercise 4: From Reals to Integers

Here are how we tend to think of the four functions:

(floor r) finds the largest integer less than or equal to r. Some would phrase this as “floor rounds
down”.

(ceiling r) finds the smallest integer greater than or equal to r. Some would phrase this as
“ceiling rounds up”.

(truncate r) removes the fractional portion of r, the portion after the decimal point.

(round r) rounds r to the nearest integer. It rounds up if the decimal portion is greater than 0.5 and it
rounds down if the decimal portion is less than 0.5. If the decimal portion equals 0.5, it rounds toward the
even number.

> (round 1.5)
2
> (round 2.5)
2
> (round 7.5)
8
> (round 8.5)
8
> (round -1.5)
-2
> (round -2.5)
-2

It’s pretty clear that floor and ceiling differ - If r has a fractional component, then (floor r) is
one less than (ceiling r).

It’s also pretty clear that round differs from all of them, since it can round in two different directions.

We can also tell that truncate is different from ceiling, at least for positive numbers, because
ceiling always rounds up, and removing the fractional portion of a positive number causes us to round
down.

So, how do truncate and floor differ? As the previous paragraph implies, they differ for negative
numbers. When you remove the fractional component of a negative number, you effectively round up.
(After all, -2 is bigger than -2.3.) However, floor always rounds down.

6

Why does Scheme include so many ways to convert reals to integers? Because experience suggests that if
you leave any of them out, some programmer will need that precise conversion.

Copyright © 2007 Janet Davis, Matthew Kluber, and Samuel A. Rebelsky. (Selected materials copyright
by John David Stone and Henry Walker and used by permission.) This material is based upon work
partially supported by the National Science Foundation under Grant No. CCLI-0633090. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation. This work is licensed under a
Creative Commons Attribution-NonCommercial 2.5 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

7

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Laboratory: Writing More Complex Color Transformations
	Preparation
	Exercises
	Exercise 1: Using Modulo
	Exercise 2: Modulo, Revisited
	Exercise 3: Trigonometric Transformations
	Exercise 4: From Reals to Integers
	Exercise 5: An Exponential Transformation

	For Those with Extra Time
	Extra 1: Rounding, Revisited

	Explorations
	Exploration 1: Modified Greyscale

	Notes
	Notes on Exercise 4: From Reals to Integers

