[Fundamentals of Computer Science I: Media Computing (CS151.02 2007F)

L aboratory: L ocal Proceduresand Recursion

Summary: In this laboratory, we consider the various techniques for creating local recursive procedures,
particularly | etrec and namedl et. We also review related issues, such as husk-and-kernel
programming.

Contents:

Exercises
|[Exercise 1: The Brightest Color, Revisjted
|[Exercise 2: Safely Computing the Brightest Color
[Exercise 3: Computing the Brightest Color, Revisited Again
|[Exercise 4: Alternating Ligts
|[Exercise 5: Taking Some Eleménts
|[Exercise 6: Taking Some More Elemégnts
O [Exercise 7: Reflectign
|[For Those With Extra Tinje
O [Extra 1: lota, Revisited
Notes
O |Notes on Exercise 1: The Brightest Color, Revisited
O |Notes on Exercise 3: Computing the Brightest Color, Revisited Again
O |Notes on Exercise 4: Alternating Lists

O

O O O O O

Preparation

a. If any of the following procedures are not in your library, add them to your library.

Procedure
rgb.light?
Par anet er s:
color, an R@& col or
Pur pose
Determine if the color appears light.
Produces:
. light?, a Bool ean
(define rgb.light?
(lanmbda (col or)
(< 66 (rgb.brightness color))))

Procedure
rgb. dark?
Par anet er s:
color, an RG@EB col or
Pur pose
Determine if the col or appears dark

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2007F/

1

1

(define rgb. dark?
(lanbda (col or)

Pr oduces:
dark?, a Bool ean

(> 34 (rgb.brightness color))))

Procedure:
rgb. bri ght ness
Par anet ers:
color, an RGB col or
Pur pose:
Conputes the brightness of color on a 0 (dark) to 100 (bright) scale.
Produces:
b, an integer
Preconditions:
color is avalid RGB color. That is, each conponent is between
0 and 255, inclusive.
Post condi ti ons:
If colorl is likely to be perceived as brighter than col or2,
then (brightness colorl) > (brightness color2).

(defl ne rgb. bri ght ness
(lanmbda (col or)

(define rgb. brighter?
(lanmbda (col orl col or2)

(round (* 100 (/ (+ (* 0.30 (rgb.red color))
(* 0.59 (rgh.green color))
(* 0.11 (rgb.blue color)))

255)))))

Procedur e:
rgb. brighter?
Par anet er s:
colorl, a color
color2, a color
Pur pose:
Determine if colorl is strictly brighter than color 2.
Pr oduces:
brighter?, a Bool ean
Precondi tions:
[No additional preconditions.]
Post condi ti ons:
If (rgb.brightness colorl) > (rgb.brightness col or2)
then brighter is true (#t)
O herwi se
brighter is false (#f)

(> (rgb.brightness colorl) (rgb.brightness color2))))

b. Create a new window in which you load your library file.

Exercises

Exercise 1. The Brightest Color, Revisited

As the reading suggested, local kernels are particularly appropriate for checking preconditions. Local
kernels are also appropriate for writing the helpers for the recursive helper procedures that take an extra
parameter, one that accumulates a result.

For example, here’s the standard helper-based definitioglnfbr i ght est .

(define rgb. bri ghtest
(lanbda (col ors)
(rgb. brightest-hel per (car colors) (cdr colors))))
(define rgb. brightest-hel per
(lanmbda (brightest-so-far remaining-colors)
(cond
((null? remaini ng-col ors)
bri ghtest-so-far)
((rgb.brighter? (car renaining-colors) brightest-so-far)
(rgb. brightest-hel per (car remaining-colors) (cdr remaining-colors)))
(el se
(rgb. brightest-hel per brightest-so-far (cdr remaining-colors))))))

a. Rewrite this to make the helper local and to name the Hedperel .

b. Test your procedure on a few simple lists of colors. For example, you might try some of the following.

(rgb->string (rgb.brightest (list color.red color.green color.blue)))

(rgb->string (rgb.brightest (list color.black)))

(rgb->string (rgb.brightest (list color.red. color.black color.green color.yellow)))
(rgb->string (rgb.brightest (list color.yellow color.red. color.black color.green)))

c. When you are done, you may want to compare your answer to the sample sojution in the notgs on this

Exercise 2: Safely Computing the Brightest Color

The procedure given above, and your rewrite of that procedure, will fail miserably if given an
inappropriate parameter, such as an empty list, a list that contains values that are not colors, or a non-list.
Rewriter gb. bri ght est so that it checks its preconditions (including that the list contains only colors)
before calling the kernel.

Exercise 3: Computing the Brightest Color, Revisited Again

Rewriter gb. bri ght est - hel per using a nametlet rather thar et r ec. (The goal of this problem
is to give you experience using namext , so you need not check preconditions for this exercise.)

When you are done, you may want to compare your answer to the sample solution in the notgs on this

[problen.

Exercise 4. Alternating Lists

A list of spots is dight-dark-alternator if its elements are alternately light spots and dark spots, beginning
with a light spot. A list of spots is dark-light-alternator if its elements are alternately dark and light,
beginning with a dark spot. (We say that the empty list is both a light-dark-alternator and a
dark-light-alternator.)

a. Write a predicatespot s. al t er nat i ng- bri ght ness?, that determines whether a non-empty list

of spots is either a light-dark-alternator or a dark-light-alternator. Your definition should include a a
| et r ec expression in which the identifiers ght - dar k- al t er nat or ? and
dark-1ight-alternator? are bound tanutually recursive predicates, each of which determines
whether a given list has the indicated characteristic.

(define spots.alternating-brightness?
(lanmbda (spots)
(letrec ((Iight-dark-alternator?
(lanmbda (spots) ...))
(dark-1light-alternator?
(lambda (spots) ...)))

)

When you are done, you may want to compare your answer to the sample solution in the notgs on this

[problenj.

b. Here are a few lists of spots. For which do you exppot s. al t er nati ng- bri ght ness? to
hold?

(define sanple0 null)

(define sanplel
(list (spot.new O O color.white)))

(define sanpl e2
(list (spot.new O O color. bl ack)))

(define sanpl e3
(list (spot.new O O color.white)
(spot.new O 1 col or. bl ack)))

(define sanpl e4
(list (spot.new O O col or. bl ack)
(spot.new O 1 color.white)))

(define sanpl e5
(list (spot.new O O col or. bl ack)
(spot.new 0 1 col or. bl ack)))

(define sanpl e6
(list (spot.new O O color.white)
(spot.new O 1 col or. bl ack)
(spot.new O 2 color.white)))

(define sanpl e7

(list (spot.new O
(spot.new O
(spot.new O
(spot.new O
(spot.new O

col or.white)
col or. bl ack)
col or.white)
col or. bl ack)
color.white)))

A WNPEFLO

(define sanpl e8

(list (spot.new O O color.red)
(spot.new 1 O col or.yell ow)
(spot.new 2 0 col or. bl ue)
(spot.new 3 0 col or.white)
(spot.new 4 0 col or. bl ack)))

c. Check your answers experimentally.

Exercise 5: Taking Some Elements

Define and test a procedurd,i st . take | st n), returns a list consisting of the finstelements of
the list,I st , in their original order. You might also think bake as returning all the values that appear
before indexn.

For example,

> (list.take (list "a" "b" "c¢" "d" "e") 3)

("a" "b" "c")

> (list.take (list 2 357 9 11 13 17) 2)

(2 3)

> (list.take (list "here" "are" "sone" "words") 0)
0

> (list.take (list null null) 2)

(0 0)
> (map rgb->string (list.take (list rgb.black rgb.white rgb.green) 1))
("o/0/0")

The procedure should signal an errdrst is not a list, ifn is not an exact integer,nifis negative, or ih
is greater than the lengthlo$t .

Note that in order to signal such errors, you may want to take advantage of the husk-and-kernel
programming style.

Exercise 6: Taking Some M ore Elements

Rewrite | i st. t ake to use whichever of namddet andl| etrec you didn't use in the previous
exercise.

Exercise 7: Reflection

You've now seen two examples in which you've written two different solutions, one lustngec and
one use named let. Reflect on which of the two strategies you prefer and why.

For Those With Extra Time

Extra 1: lota, Revisited

As you may recall, theot a procedure takes a natural number as a parameter and returns a list of all the
lesser natural numbers in ascending order. For example,

> (iota 5)
(01234

a. Define and test a version of thet a procedure that usé®t r ec to pack an appropriate kernel inside
a husk. The husk should do precondition testing and the kernel should build the list. This versioa of
should look something like

(define iota

(lanbda (num
(letrec ((kernel (lanmbda (...) ...)))
(cond
((fails-precondition) (error ...))

kéise (kernel num)))))

b. Define and test a version of thet a procedure that uses a nameat . This version of ot a should
look something like

(define iota
(lanbda (num
(cond
((fails-precondition) (error ...))
(el se
(let kernel (...)
-)))))

Notes

Noteson Exercise 1: The Brightest Color, Revisited

Here’s one possible solution.

(define rgb. brightest
(lanbda (col ors)
(letrec ((kerne
(lambda (brightest-so-far remaining-col ors)
(cond
((nulI'? remaini ng-col ors)
bri ghtest-so-far)
((rgb. brighter? (car remaining-colors) brightest-so-far)
(kernel (car remaining-colors)
(cdr renaining-colors)))

(el se
(kernel brightest-so-far
(cdr remaining-colors)))))))
(kernel (car colors) (cdr colors)))))

Notes on Exercise 3: Computing the Brightest Color, Revisited Again

Here’s one possible solution.

(define rgb. brightest
(lanbda (col ors)
(let kernel ((brightest-so-far (car colors))
(remai ni ng-colors (cdr colors)))
(cond
((null? remaini ng-col ors)
brightest-so-far)
((rgb.brighter? (car renaining-colors) brightest-so-far)
(kernel (car remaining-colors)
(cdr remaini ng-colors)))
(el se
(kernel brightest-so-far
(cdr remaining-colors)))))))

Noteson Exercise 4: Alternating Lists

Oncel i ght - dar k- al t ernat or ? anddar k-1i ght - al t er nat or ? are written, the definition is
fairly straightforward. A non-empty list of spots has alternating brightness if it's not empty and it's either a
light-dark-alternator or a dark-light-alternator.

(and (not (null? spots))
(or (light-dark-alternator? spots)
(dark-light-alternator? spots)))

Each definition is also fairly straightforward. A list is a light-dark-alternator if it's empty or if the car is
light and the cdr is a dark-light-alternator.

(l'ight-dark-alternator?
(lanbda (spots)
(or (null? spots)
(and (rgb.light? (spot.color (car spots)))
(dark-light-alternator? (cdr spots))))))

The definition ofdar k-1 i ght - al t er nat or ? is so similar that we will not give it separately.

Putting everything together, we get

(define spots.alternating-brightness?
(lanbda (spots)

(letrec ((light-dark-alternator?

(lanbda (spots)
(or (null? spots)
(and (rgb.light? (spot.color (car spots)))
(dark-light-alternator? (cdr spots))))))
(dark-light-alternator?

(lanbda (spots)
(or (null? spots)
(and (rgb.dark? (spot.color (car spots)))
(light-dark-alternator? (cdr spots)))))))

(and (not (null? spots))
(or (light-dark-alternator? spots)
(dark-light-alternator? spots))))))

Note that there’s a hidden moral here: The procedures definddeinrac can bemutually recursive.

Copyright © 2007 Janet Davis, Matthew Kluber, and Samuel A. Rebelsky. (Selected materials copyright
by John David Stone and Henry Walker and used by permission.) This material is based upon work
partially supported by the National Science Foundation under Grant No. CCLI-0633090. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation. This work is licensed under a
[Creative Commons_Attribution-NonCommercial 2.5 Licgnse. To view a copy of this license, visit
lhttp://creati vecommons. org/li censes/by-nc/2.5/| or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Laboratory: Local Procedures and Recursion
	Preparation
	Exercises
	Exercise 1: The Brightest Color, Revisited
	Exercise 2: Safely Computing the Brightest Color
	Exercise 3: Computing the Brightest Color, Revisited Again
	Exercise 4: Alternating Lists
	Exercise 5: Taking Some Elements
	Exercise 6: Taking Some More Elements
	Exercise 7: Reflection

	For Those With Extra Time
	Extra 1: Iota, Revisited

	Notes
	Notes on Exercise 1: The Brightest Color, Revisited
	Notes on Exercise 3: Computing the Brightest Color, Revisited Again
	Notes on Exercise 4: Alternating Lists

