
Fundamentals of Computer Science I: Media Computing (CS151.02 2007F)

Laboratory: Local Procedures and Recursion
Summary: In this laboratory, we consider the various techniques for creating local recursive procedures,
particularly letrec and named let. We also review related issues, such as husk-and-kernel
programming.

Contents:

Preparation
Exercises

Exercise 1: The Brightest Color, Revisited
Exercise 2: Safely Computing the Brightest Color
Exercise 3: Computing the Brightest Color, Revisited Again
Exercise 4: Alternating Lists
Exercise 5: Taking Some Elements
Exercise 6: Taking Some More Elements
Exercise 7: Reflection

For Those With Extra Time
Extra 1: Iota, Revisited

Notes
Notes on Exercise 1: The Brightest Color, Revisited
Notes on Exercise 3: Computing the Brightest Color, Revisited Again
Notes on Exercise 4: Alternating Lists

Preparation
a. If any of the following procedures are not in your library, add them to your library.

;;; Procedure:
;;; rgb.light?
;;; Parameters:
;;; color, an RGB color
;;; Purpose:
;;; Determine if the color appears light.
;;; Produces:
;;; light?, a Boolean
(define rgb.light?
 (lambda (color)
 (< 66 (rgb.brightness color))))

;;; Procedure:
;;; rgb.dark?
;;; Parameters:
;;; color, an RGB color
;;; Purpose:
;;; Determine if the color appears dark.

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2007F/

;;; Produces:
;;; dark?, a Boolean
(define rgb.dark?
 (lambda (color)
 (> 34 (rgb.brightness color))))

;;; Procedure:
;;; rgb.brightness
;;; Parameters:
;;; color, an RGB color
;;; Purpose:
;;; Computes the brightness of color on a 0 (dark) to 100 (bright) scale.
;;; Produces:
;;; b, an integer
;;; Preconditions:
;;; color is a valid RGB color. That is, each component is between
;;; 0 and 255, inclusive.
;;; Postconditions:
;;; If color1 is likely to be perceived as brighter than color2,
;;; then (brightness color1) > (brightness color2).
(define rgb.brightness
 (lambda (color)
 (round (* 100 (/ (+ (* 0.30 (rgb.red color))
 (* 0.59 (rgb.green color))
 (* 0.11 (rgb.blue color)))
 255)))))

;;; Procedure:
;;; rgb.brighter?
;;; Parameters:
;;; color1, a color
;;; color2, a color
;;; Purpose:
;;; Determine if color1 is strictly brighter than color 2.
;;; Produces:
;;; brighter?, a Boolean
;;; Preconditions:
;;; [No additional preconditions.]
;;; Postconditions:
;;; If (rgb.brightness color1) > (rgb.brightness color2)
;;; then brighter is true (#t)
;;; Otherwise
;;; brighter is false (#f)
(define rgb.brighter?
 (lambda (color1 color2)
 (> (rgb.brightness color1) (rgb.brightness color2))))

b. Create a new window in which you load your library file.

Exercises

2

Exercise 1: The Brightest Color, Revisited

As the reading suggested, local kernels are particularly appropriate for checking preconditions. Local
kernels are also appropriate for writing the helpers for the recursive helper procedures that take an extra
parameter, one that accumulates a result.

For example, here’s the standard helper-based definition of rgb.brightest.

(define rgb.brightest
 (lambda (colors)
 (rgb.brightest-helper (car colors) (cdr colors))))
(define rgb.brightest-helper
 (lambda (brightest-so-far remaining-colors)
 (cond
 ((null? remaining-colors)
 brightest-so-far)
 ((rgb.brighter? (car remaining-colors) brightest-so-far)
 (rgb.brightest-helper (car remaining-colors) (cdr remaining-colors)))
 (else
 (rgb.brightest-helper brightest-so-far (cdr remaining-colors))))))

a. Rewrite this to make the helper local and to name the helper kernel.

b. Test your procedure on a few simple lists of colors. For example, you might try some of the following.

(rgb->string (rgb.brightest (list color.red color.green color.blue)))
(rgb->string (rgb.brightest (list color.black)))
(rgb->string (rgb.brightest (list color.red. color.black color.green color.yellow)))
(rgb->string (rgb.brightest (list color.yellow color.red. color.black color.green)))

c. When you are done, you may want to compare your answer to the sample solution in the notes on this
problem.

Exercise 2: Safely Computing the Brightest Color

The procedure given above, and your rewrite of that procedure, will fail miserably if given an
inappropriate parameter, such as an empty list, a list that contains values that are not colors, or a non-list.
Rewrite rgb.brightest so that it checks its preconditions (including that the list contains only colors)
before calling the kernel.

Exercise 3: Computing the Brightest Color, Revisited Again

Rewrite rgb.brightest-helper using a named let rather than letrec. (The goal of this problem
is to give you experience using named let, so you need not check preconditions for this exercise.)

When you are done, you may want to compare your answer to the sample solution in the notes on this
problem.

3

Exercise 4: Alternating Lists

A list of spots is a light-dark-alternator if its elements are alternately light spots and dark spots, beginning
with a light spot. A list of spots is a dark-light-alternator if its elements are alternately dark and light,
beginning with a dark spot. (We say that the empty list is both a light-dark-alternator and a
dark-light-alternator.)

a. Write a predicate, spots.alternating-brightness?, that determines whether a non-empty list
of spots is either a light-dark-alternator or a dark-light-alternator. Your definition should include a a
letrec expression in which the identifiers light-dark-alternator? and
dark-light-alternator? are bound to mutually recursive predicates, each of which determines
whether a given list has the indicated characteristic.

(define spots.alternating-brightness?
 (lambda (spots)
 (letrec ((light-dark-alternator?
 (lambda (spots) ...))
 (dark-light-alternator?
 (lambda (spots) ...)))
 ...)))

When you are done, you may want to compare your answer to the sample solution in the notes on this
problem.

b. Here are a few lists of spots. For which do you expect spots.alternating-brightness? to
hold?

(define sample0 null)

(define sample1
 (list (spot.new 0 0 color.white)))

(define sample2
 (list (spot.new 0 0 color.black)))

(define sample3
 (list (spot.new 0 0 color.white)
 (spot.new 0 1 color.black)))

(define sample4
 (list (spot.new 0 0 color.black)
 (spot.new 0 1 color.white)))

(define sample5
 (list (spot.new 0 0 color.black)
 (spot.new 0 1 color.black)))

(define sample6
 (list (spot.new 0 0 color.white)
 (spot.new 0 1 color.black)
 (spot.new 0 2 color.white)))

(define sample7

4

 (list (spot.new 0 0 color.white)
 (spot.new 0 1 color.black)
 (spot.new 0 2 color.white)
 (spot.new 0 3 color.black)
 (spot.new 0 4 color.white)))

(define sample8
 (list (spot.new 0 0 color.red)
 (spot.new 1 0 color.yellow)
 (spot.new 2 0 color.blue)
 (spot.new 3 0 color.white)
 (spot.new 4 0 color.black)))

c. Check your answers experimentally.

Exercise 5: Taking Some Elements

Define and test a procedure, (list.take lst n), returns a list consisting of the first n elements of
the list, lst, in their original order. You might also think of take as returning all the values that appear
before index n.

For example,

> (list.take (list "a" "b" "c" "d" "e") 3)
("a" "b" "c")
> (list.take (list 2 3 5 7 9 11 13 17) 2)
(2 3)
> (list.take (list "here" "are" "some" "words") 0)
()
> (list.take (list null null) 2)
(() ())
> (map rgb->string (list.take (list rgb.black rgb.white rgb.green) 1))
("0/0/0")

The procedure should signal an error if lst is not a list, if n is not an exact integer, if n is negative, or if n
is greater than the length of lst.

Note that in order to signal such errors, you may want to take advantage of the husk-and-kernel
programming style.

Exercise 6: Taking Some More Elements

Rewrite list.take to use whichever of named let and letrec you didn’t use in the previous
exercise.

Exercise 7: Reflection

You’ve now seen two examples in which you’ve written two different solutions, one using letrec and
one use named let. Reflect on which of the two strategies you prefer and why.

5

For Those With Extra Time

Extra 1: Iota, Revisited

As you may recall, the iota procedure takes a natural number as a parameter and returns a list of all the
lesser natural numbers in ascending order. For example,

> (iota 5)
(0 1 2 3 4)

a. Define and test a version of the iota procedure that uses letrec to pack an appropriate kernel inside
a husk. The husk should do precondition testing and the kernel should build the list. This version of iota
should look something like

(define iota
 (lambda (num)
 (letrec ((kernel (lambda (...) ...)))
 (cond
 ((fails-precondition) (error ...))
 ...
 (else (kernel num))))))

b. Define and test a version of the iota procedure that uses a named let. This version of iota should
look something like

(define iota
 (lambda (num)
 (cond
 ((fails-precondition) (error ...))
 ...
 (else
 (let kernel (...)
 ...)))))

Notes

Notes on Exercise 1: The Brightest Color, Revisited

Here’s one possible solution.

(define rgb.brightest
 (lambda (colors)
 (letrec ((kernel
 (lambda (brightest-so-far remaining-colors)
 (cond
 ((null? remaining-colors)
 brightest-so-far)
 ((rgb.brighter? (car remaining-colors) brightest-so-far)
 (kernel (car remaining-colors)
 (cdr remaining-colors)))

6

 (else
 (kernel brightest-so-far
 (cdr remaining-colors)))))))
 (kernel (car colors) (cdr colors)))))

Notes on Exercise 3: Computing the Brightest Color, Revisited Again

Here’s one possible solution.

(define rgb.brightest
 (lambda (colors)
 (let kernel ((brightest-so-far (car colors))
 (remaining-colors (cdr colors)))
 (cond
 ((null? remaining-colors)
 brightest-so-far)
 ((rgb.brighter? (car remaining-colors) brightest-so-far)
 (kernel (car remaining-colors)
 (cdr remaining-colors)))
 (else
 (kernel brightest-so-far
 (cdr remaining-colors)))))))

Notes on Exercise 4: Alternating Lists

Once light-dark-alternator? and dark-light-alternator? are written, the definition is
fairly straightforward. A non-empty list of spots has alternating brightness if it’s not empty and it’s either a
light-dark-alternator or a dark-light-alternator.

 (and (not (null? spots))
 (or (light-dark-alternator? spots)
 (dark-light-alternator? spots)))

Each definition is also fairly straightforward. A list is a light-dark-alternator if it’s empty or if the car is
light and the cdr is a dark-light-alternator.

 (light-dark-alternator?
 (lambda (spots)
 (or (null? spots)
 (and (rgb.light? (spot.color (car spots)))
 (dark-light-alternator? (cdr spots))))))

The definition of dark-light-alternator? is so similar that we will not give it separately.

Putting everything together, we get

(define spots.alternating-brightness?
 (lambda (spots)
 (letrec ((light-dark-alternator?
 (lambda (spots)
 (or (null? spots)
 (and (rgb.light? (spot.color (car spots)))
 (dark-light-alternator? (cdr spots))))))
 (dark-light-alternator?

7

 (lambda (spots)
 (or (null? spots)
 (and (rgb.dark? (spot.color (car spots)))
 (light-dark-alternator? (cdr spots)))))))
 (and (not (null? spots))
 (or (light-dark-alternator? spots)
 (dark-light-alternator? spots))))))

Note that there’s a hidden moral here: The procedures defined in a letrec can be mutually recursive.

Copyright © 2007 Janet Davis, Matthew Kluber, and Samuel A. Rebelsky. (Selected materials copyright
by John David Stone and Henry Walker and used by permission.) This material is based upon work
partially supported by the National Science Foundation under Grant No. CCLI-0633090. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation. This work is licensed under a
Creative Commons Attribution-NonCommercial 2.5 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

8

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Laboratory: Local Procedures and Recursion
	Preparation
	Exercises
	Exercise 1: The Brightest Color, Revisited
	Exercise 2: Safely Computing the Brightest Color
	Exercise 3: Computing the Brightest Color, Revisited Again
	Exercise 4: Alternating Lists
	Exercise 5: Taking Some Elements
	Exercise 6: Taking Some More Elements
	Exercise 7: Reflection

	For Those With Extra Time
	Extra 1: Iota, Revisited

	Notes
	Notes on Exercise 1: The Brightest Color, Revisited
	Notes on Exercise 3: Computing the Brightest Color, Revisited Again
	Notes on Exercise 4: Alternating Lists

