
Fundamentals of Computer Science I (CS151.01 2006F)

Repetition Through Recursion
Summary: In many algorithms, you want to do things again and again and again. For example, you might
want to do something with each value in a list. In general, the term used for doing things again and again
is called repetition. In Scheme, the primary technique used for repetition is called recursion, and involves
having procedures call themselves.

Contents:

Introduction
An Example: Summation

Watching Sum Work
Base Cases
An Alternative Sum

Watching New Sum
Filtering Lists
Singleton Base Cases
A Common Form of Recursive Procedures
Using And and Or

Introduction
As we’ve already seen, it is commonplace for the body of a procedure to include calls to another
procedure, or even to several others. For example, we might write our “find one root of the quadratic
equation” procedure as

(define root1
 (lambda (a b c)
 (/ (+ (- 0 b)
 (sqrt (- (* b b)
 (* 4 a c))))
 (* 2 a))))

Here, there are calls to addition, subtraction, division, multiplication, and square root in the definition of
root1.

Direct recursion is the special case of this construction in which the body of a procedure includes one or
more calls to the very same procedure -- calls that deal with simpler or smaller arguments.

An Example: Summation
For instance, let’s define a procedure called sum that takes one argument, a list of numbers, and returns
the result of adding all of the elements of the list together:

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2006F/

> (sum (list 91 85 96 82 89))
443
> (sum (list -17 17 12 -4))
8
> (sum (list 19/3))
19/3
> (sum null)
0

Because the list to which we apply sum may have any number of elements, we can’t just pick out the
numbers using list-ref and add them up -- there’s no way to know in general whether an element even
exists at the position specified by the second argument to list-ref. One thing we do know about lists,
however, is that every list is either (a) empty, or (b) composed of a first element and a list of the rest of the
elements, which we can obtain with the car and cdr procedures.

Moreover, we can use the predicate null? to distinguish between the (a) and (b) cases, and conditional
evaluation to make sure that only the expression for the appropriate case is chosen. So the structure of our
definition is going to look something like this:

(define sum
 (lambda (numbers)
 (if (null? numbers)
 ; The sum of an empty list
 ; The sum of a non-empty list
)))

The sum of the empty list is easy -- since there’s nothing to add, the total is 0.

And we know that in computing the sum of a non-empty list, we can use (car numbers), which is the
first element, and (cdr numbers), which is the rest of the list. So the problem is to find the sum of a
non-empty list, given the first element and the rest of the list. Well, the rest of the list is one of those
“simpler or smaller” arguments mentioned above. Since Scheme supports direct recursion, we can invoke
the sum procedure within its own definition to compute the sum of the elements of the rest of a non-empty
list. Add the first element to this sum, and we’re done!

;;; Procedure:
;;; sum
;;; Parameters:
;;; numbers, a list of numbers.
;;; Purpose:
;;; Find the sum of the elements of a given list of numbers
;;; Produces:
;;; total, a number.
;;; Preconditions:
;;; All the elements of numbers must be numbers.
;;; Postcondition:
;;; total is the result of adding together all of the elements of numbers.
;;; If all the values in numbers are exact, total is exact.
;;; If any values in numbers are inexact, total is inexact.
(define sum
 (lambda (numbers)
 (if (null? numbers)
 0
 (+ (car numbers) (sum (cdr numbers))))))

2

At first, this may look strange or magical, like a circular definition: If Scheme has to know the meaning of
sum before it can process the definition of sum, how does it ever get started?

The answer is what Scheme learns from a procedure definition is not so much the meaning of a word as
the algorithm, the step-by-step method, for solving a problem. Sometimes, in order to solve a problem,
you have to solve another, somewhat simpler problem of the same sort. There’s no difficulty here as long
as you can eventually reduce the problem to one that you can solve directly.

Another way to think about it is in terms of the way we normally write instructions. We often say “go back
to the beginning and do the steps again”. Given that we’ve named the steps in the algorithm, the recursive
call is, in one sense, a way to tell the computer to go back to the beginning.

Watching Sum Work

The repeatedly solving simpler problems strategy is how Scheme proceeds when it deals with a call to a
recursive procedure -- say, (sum (cons 38 (cons 12 (cons 83 null)))). First, it checks to
find out whether the list it is given is empty. In this case, it isn’t. So we need to determine the result of
adding together the value of (car ls), which in this case is 38, and the sum of the elements of (cdr
ls) -- the rest of the given list.

The rest of the list at this point is the value of (cons 12 (cons 83 null)). How do we compute its
sum? We call the sum procedure again. This list of two elements isn’t empty either, so again we wind up
in the alternate of the if-expression. This time we want to add 12, the first element, to the sum of the rest
of the list. By “rest of the list”, this time, we mean the value of (cons 83 null) -- a one-element list.

To compute the sum of this one-element list, we again invoke the sum procedure. A one-element list still
isn’t empty, so we head once more into the alternate of the if-expression, adding the car, 83, to the sum
of the elements of the cdr, null. The “rest of the list” this time around is empty, so when we invoke sum
yet one more time, to determine the sum of this empty list, the test in the if-expression succeeds and the
consequent, rather than the alternate, is selected. The sum of null is 0.

We now have to work our way back out of all the procedure calls that have been waiting for arguments to
be computed. The sum of the one-element list, you’ll recall, is 83 plus the sum of null, that is, 83 + 0, or
just 83. The sum of the two-element list is 12 plus the sum of the (cons 83 null), that is, 12 + 83, or
95. Finally, the sum of the original three-element list is 38 plus the sum of (cons 12 (cons 83
null)) that is, 38 + 95, or 133.

Here’s a summary of the steps in the evaluation process.

 (sum (cons 38 (cons 12 (cons 83 null))))
=> (+ 38 (sum (cons 12 (cons 83 null)))))
=> (+ 38 (+ 12 (sum (cons 83 null))))
=> (+ 38 (+ 12 (+ 83 (sum null))))
=> (+ 38 (+ 12 (+ 83 0)))
=> (+ 38 (+ 12 83))
=> (+ 38 95)
=> 133

3

Talk about delayed gratification! That’s a while to wait before we can do the first addition.

The process is exactly the same, by the way, regardless of whether we construct the three-element list
using cons, as in the example above, or as (list 38 12 83) or ’(38 12 83). Since we get the
same list in each case, sum takes it apart in exactly the same way no matter what mechanism was used to
build it.

Base Cases
The method of recursion works in this case because each time we invoke the sum procedure, we give it a
list that is a little shorter and so a little easier to deal with, and eventually we reach the base case of the
recursion -- the empty list -- for which the answer can be computed immediately.

If, instead, the problem became harder or more complicated on each recursive invocation, or if it were
impossible ever to reach the base case, we’d have a runaway recursion -- a programming error that shows
up in DrScheme not as a diagnostic message printed in red, but as an endless wait for a result. The
designers of DrScheme’s interface provided a Break button above the definition window so that you can
interrupt a runaway recursion: Move the mouse pointer onto it and click the left mouse button, and
DrScheme will abandon its attempt to evaluate the expression it’s working on.

As you may have noted, there are three basic parts to these kinds of recursive functions.

A recursive case in which the function calls itself with a simpler or smaller parameter.
A base case in which the function does not call itself.
A test that decides which case holds.

You’ll come back to these three parts for each function you write.

An Alternative Sum
As you may have noted, an odd thing about the sum procedure is that it works from right to left.
Traditionally, we sum from left to right. Can we rewrite sum to work from left to right? Certainly, but we
may need a helper procedure (another procedure whose primary purpose is to assist our current procedure)
to do so.

If you think about it, when you’re summing a list of numbers from left to right, you need to keep track of
two different things:

The sum of the values seen so far.
The remaining values to add.

Hence, we’ll build our helper procedure with two parameters, sum-so-far and remaining. We’ll
start the body with a template for recursive procedures (a test to determine whether to use the base case or
recursive case, the base case, and the recursive case). We’ll then fill in each part.

4

(define new-sum-helper
 (lambda (sum-so-far remaining)
 (if (test)
 base-case
 recursive-case)))

The recursive case is fairly easy. We add the first element of remaining to sum-so-far and continue
with the new sum-so-far and the rest of remaining. To “continue”, we simply call
new-sum-helper again.

(define new-sum-helper
 (lambda (sum-so-far remaining)
 (if (test)
 base-case
 (new-sum-helper (+ sum-so-far (car remaining))
 (cdr remaining)))))

The recursive case then gives us a clue as to what to use for the test. We need to stop when there are no
elements left in the list.

(define new-sum-helper
 (lambda (sum-so-far remaining)
 (if (null? remaining)
 base-case
 (new-sum-helper (+ sum-so-far (car remaining))
 (cdr remaining)))))

We’re almost done. What should the base case be? In the previous version, it was 0. However, in this case,
we’ve been keeping a running sum. When we run out of things to add, the value of the complete sum is the
value of the running sum.

(define new-sum-helper
 (lambda (sum-so-far remaining)
 (if (null? remaining)
 sum-so-far
 (new-sum-helper (+ sum-so-far (car remaining))
 (cdr remaining)))))

Now we’re ready to write the primary procedure whose responsibility it is to call new-sum-helper.
Like sum, new-sum will take a list as a parameter. That list will become remaining. What value
should sum-so-far begin with? Since we have not yet added anything when we start, it begins at 0.

(define new-sum
 (lambda (numbers)
 (new-sum-helper 0 numbers)))

Putting it all together, we get the following.

;;; Procedure:
;;; new-sum
;;; Parameters:
;;; numbers, a list of numbers.
;;; Purpose:
;;; Find the sum of the elements of a given list of numbers

5

;;; Produces:
;;; total, a number.
;;; Preconditions:
;;; All the elements of numbers must be numbers.
;;; Postcondition:
;;; total is the result of adding together all of the elements of numbers.
;;; If all the values in numbers are exact, total is exact.
;;; If any values in numbers are inexact, total is inexact.
(define new-sum
 (lambda (numbers)
 (new-sum-helper 0 numbers)))

;;; Procedure:
;;; new-sum-helper
;;; Parameters:
;;; sum-so-far, a number.
;;; remaining, a list of numbers.
;;; Purpose:
;;; Add sum-so-far to the sum of the elements of a given list of numbers
;;; Produces:
;;; total, a number.
;;; Preconditions:
;;; All the elements of remaining must be numbers.
;;; sum-so-far must be a number.
;;; Postcondition:
;;; total is the result of adding together sum-so-far and all of the
;;; elements of remaining.
;;; If both sum-so-far and all the values in remaining are exact,
;;; total is exact.
;;; If either sum-so-far or any values in remaining are inexact,
;;; total is inexact.
(define new-sum-helper
 (lambda (sum-so-far remaining)
 (if (null? remaining)
 sum-so-far
 (new-sum-helper (+ sum-so-far (car remaining))
 (cdr remaining)))))

Watching New Sum

Does this change make a difference in the way in which the sum is evaluated? Let’s watch.

 (new-sum (cons 38 (cons 12 (cons 83 null))))
=> (new-sum-helper 0 (cons 38 (cons 12 (cons 83 null))))
=> (new-sum-helper (+ 0 38) (cons 12 (cons 83 null)))
=> (new-sum-helper 38 (cons 12 (cons 83 null)))
=> (new-sum-helper (+ 38 12) (cons 83 null))
=> (new-sum-helper 50 (cons 83 null))
=> (new-sum-helper (+ 50 83) null)
=> (new-sum-helper 133 null)
=> 133

Note that the intermediate results for new-sum were different, primarily because new-sum operates
from left to right.

6

Filtering Lists
Often the computation for a non-empty list involves making another test. Suppose, for instance, that we
want to define a procedure that takes a list of integers and “filters out” the negative ones, so that if, for
instance, we give it a list consisting of -13, 63, -1, 0, 4, and -78, it returns a list consisting of 63, 0, and 4.
We can use direct recursion to develop such a procedure:

If the given list is empty, there are no elements to filter out and also no elements to keep, so the
correct result is the empty list.
If the given list is not empty, we examine its car and its cdr. We can use a call to the very procedure
that we’re defining to filter negative elements out of the cdr. That gives a list comprising all of its
non-negative elements.

If the car of the given list -- that is, its first element -- is negative, we ignore the car and just
return the result of the recursive procedure call, without change.
Otherwise, we invoke cons to attach the car to the new list.

Translating this algorithm into Scheme yields the following definition:

(define filter-out-negatives
 (lambda (ls)
 (if (null? ls)
 null
 (if (negative? (car ls))
 (filter-out-negatives (cdr ls))
 (cons (car ls) (filter-out-negatives (cdr ls)))))))

Of course, when you see nested if expressions, you may instead prefer to use a cond. We can express
the same idea as follows:

(define filter-out-negatives
 (lambda (ls)
 (cond
 ((null? ls) null)
 ((negative? (car ls)) (filter-out-negatives (cdr ls)))
 (else (cons (car ls) (filter-out-negatives (cdr ls)))))))

Singleton Base Cases
Sometimes the problem that we need an algorithm for doesn’t apply to the empty list, even in a vacuous or
trivial way, and the base case for a direct recursion instead involves singleton lists -- that is, lists with only
one element. For instance, suppose that we want an algorithm that finds a largest element of a given
non-empty list of real numbers. (The list must be non-empty because there is no “largest element” of an
empty list.)

> (largest-of-list (list -17 38 62/3 -14/9 204/5 26 19))
204/5

7

The assumption that the list is not empty is a precondition for the meaningful use of this procedure, just as
a call to Scheme’s built-in quotient procedure requires that the second argument, the divisor, be
non-zero. You should form the habit of noting and detailing such preconditions as you write the initial
comment for a procedure:

;;; Procedure:
;;; largest-of-list
;;; Parameters:
;;; numbers, a list of real numbers.
;;; Purpose:
;;; Find the largest element of a given list of real numbers
;;; Produces:
;;; largest, a real number.
;;; Preconditions:
;;; numbers is not empty.
;;; All the values in numbers are real numbers. That is, numbers
;;; contains only numbers, and none of those numbers are complex.
;;; Postconditions:
;;; largest is an element of numbers (and, by implication, is real).
;;; largest is greater than or equal to every element of numbers.

If a list of real numbers is a singleton, the answer is trivial -- its only element is one of its largest elements.
Otherwise, we can take the list apart into its car and its cdr, invoke the procedure recursively to find the
largest element of the cdr, and use Scheme’s built-in procedure max to compare the car to the largest
element of the cdr, returning whichever is greater.

We can test whether the given list is a singleton by checking whether its cdr is an empty list. The value of
the expression (null? (cdr ls)) is #t if ls is a singleton, #f if ls has two or more elements.

Here, then, is the procedure definition:

(define largest-of-list
 (lambda (numbers)
 (if (null? (cdr numbers))
 (car numbers)
 (max (car numbers) (largest-of-list (cdr numbers))))))

If someone who uses this procedure happens to violate its precondition, applying the procedure to the
empty list, DrScheme notices the error and prints out a diagnostic message:

> (largest-of-list null)
cdr: expects argument of type <pair>; given ()

A Common Form of Recursive Procedures
If you consider the examples above, you will see that there is a common form for most of the procedures.
The form goes something like this

8

(define recursive-proc
 (lambda (val)
 (if (base-case-test?)
 (base-case-computation val)
 (combine (partof val)
 (recursive-proc (simplify val))))))

For example, for the largest-of-list procedure,

The recursive-proc is largest-of-list.
The val is numbers, our list of numbers.
The base-case-test is (null? (cdr numbers)), which checks whether numbers has only one
element.
The base-case-computation is car, which extracts the one number left in numbers.
The partof procedure is also car, which extracts the first number in numbers.
The simplify procedure is cdr, which drops the first element, thereby giving us a simpler (well,
smaller) list.
Finally, the combine procedure is max.

Similarly, consider the first complete version of sum.

(define sum
 (lambda (numbers)
 (if (null? numbers)
 0
 (+ (car numbers) (sum (cdr numbers))))))

In the sum procedure,

The recursive-proc is sum.
The val is again numbers, a list of numbers.
The base-case-test is (null? numbers), which checks if we have no numbers.
The base-case-computation is 0. (This computation does not quite match the form above, since we
don’t apply the 0 to numbers. As this example suggests, sometimes the base case does not involve
the parameter.)
The partof procedure is car, which extracts the first value in numbers.
The simplify procedure is cdr, which drops the the first element.

Using And and Or
Of course, this common form is not the only way to define recursive procedures. In particular, when we
define a predicate that uses direct recursion on a given list, the definition is usually a little simpler if we
use and- and or-expressions rather than if-expressions. For instance, consider a predicate all-even?
that takes a given list of integers and determines whether all of them are even. As usual, we consider the
cases of the empty list and non-empty lists separately:

9

Since the empty list has no elements, it is (as mathematicians say) “vacuously true” that all of its
elements are even -- there is certainly no counterexample that one could use to refute the assertion. So
all-even? should return #t when given the empty list.
For a non-empty list, we separate the car and the cdr. If the list is to count as “all even”, the car must
clearly be even, and in addition the cdr must be an all-even list. We can use a recursive call to
determine whether the cdr is all-even, and we can combine the expressions that test the car and cdr
conditions with and to make sure that they are both satisfied.

Thus all-even? should return #t when the given list either is empty or has an even first element and
all even elements after that. This yields the following definition:

;;; Procedure:
;;; all-even?
;;; Parameters:
;;; values, a list of integers.
;;; Purpose:
;;; Determine whether all of the elements of a list of integers
;;; are even.
;;; Produces:
;;; result, a Boolean.
;;; Preconditions:
;;; All the values in the list are integers.
;;; Postconditions:
;;; result is #t if all of the elements of values are even.
;;; result is #f if at least one element is not even.
(define all-even?
 (lambda (values)
 (or (null? values)
 (and (even? (car values))
 (all-even? (cdr values))))))

When values is the empty list, all-even? applies the first test in the or-expression, finds that it
succeeds, and stops, returning #t. In any other case, the first test fails, so all-even? proceeds to
evaluate the first test in the and-expression. If the first element of values is odd, the test fails, so
all-even? stops, returning #f. However, if the first element of values is even, the test succeeds, so
all-even? goes on to the recursive procedure call, which checks whether all of the remaining elements
are even, and returns the result of this recursive call, however it turns out.

Copyright © 2006 Samuel A. Rebelsky. This work is licensed under a Creative Commons
Attribution-NonCommercial 2.5 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

10

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Repetition Through Recursion
	Introduction
	An Example: Summation
	Watching Sum Work

	Base Cases
	An Alternative Sum
	Watching New Sum

	Filtering Lists
	Singleton Base Cases
	A Common Form of Recursive Procedures
	Using And and Or

