[Fundamentals of Computer Science | (CS151.01 2006F)

L ocal Procedure Bindings and Recursion

Summary: We considef et r ec, a variant of et that permits us to write recursive local procedures.

Contents:

® [Introductio

® [Local Procedure Bindings

® |A Problem: Recursive Procedure Bindihgs
e [A Solution:| et r ec]

e [Husk-and-Kernel with Local Kerngls

e [An Alternative: The Namebet |

I ntroduction

As you have probably noted, we often find it useful to write helper procedures that accompany our main
procedures. For example, we might use a helper to recurse on part of a larger structure or to act as the
kernel of a husk-and-kernel procedure.

One issue with this technique is that it often makes little sense for other procedures to use the helper, so
we should restrict access to the helper procedure. In particular, only the procedure that uses the helper
(unless it's a very generic helper) should be able to access the helper. We know how to restrict access to
variables (usingl et andl et *). Can we do the same for procedures?

L ocal Procedure Bindings

Yes. As the reading on local bindings suggested, it is possibld fetr -®xpression to bind an identifier to
a non-recursive procedure:

> (let ((square (lanbda (n) (* nn))))
(square 12))
144

Like any other binding that is introduced ih @t -expression, this binding is local. Within the body of the
| et -expression, it supersedes any previous binding of the same identifier, but as soon as the value of the
| et -expression has been computed, the local binding evaporates.

A Problem: Recursive Procedure Bindings

However, it is not possible to bind an identifier to a recursively defined procedure in this way. For
example, consider the following expression which is intended to recursively create the list of values from
10to 1.


http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2006F/

> (let ((count-down (Ilanbda (n)
(if (zero? n)
nul |
(cons n (count-down (- n 1)))))))
(count-down 10))
reference to undefined identifier: count-down

The difficulty is that when theamnbda-expression is evaluated, the identiftayunt - down has not yet

been bound, so the value of thanbda-expression is a procedure that includes an unbound identifier.
Binding this procedure value to the identifieount - down creates a new environment, but does not
affect the behavior of procedures that were constructed in the old environment. So, when the body of the
| et -expression invokes this procedure, we get the unbound-identifier error.

Changingd et tol et * wouldn't help in this case, since even unidet * thel anbda-expression would
be completely evaluated before the binding is established.

A Solution: | etr ec

What we need is some variantlat that binds the identifier to some kind of a place-holder and adds the
binding to the environmentirst, then computes the value of thexnrbda-expression in the new
environment, and then finally substitutes that value for the place-holder. This will work in Scheme, so
long as the procedure is not actually invoked until we get into the body of the expression.

Fortunately, the designers of Scheme decided to let us write local procedures using that technique. The
keyword associated with this “recursive binding” variant ef is named et r ec:

> (letrec ((count-down (Ilanbda (n)
(if (zero? n)
nul |
(cons n (count-down (- n 1)))))))
(count-down 10))
(109 87654321)

A | et r ec-expression constructs all of its place-holder bindings simultaneously (in effect), then evaluates
all of the | anbda-expressions simultaneously, and finally replaces all of the place-holders
simultaneously. This makes it possible to include binding specifications for mutually recursive procedures
(which invoke each other) in the same binding list. Here's a particularly silly example, which takes a list
of numbers and alternately adds and subtracts them.

> (letrec ((up-sum
(lambda (Is)
(if (null?1s)
0

(+ (down-sum (cdr 1s)) (car 1s)))))
(down-sum
(lambda (Is)
(if (null?1s)
0

(- (up-sum (cdr Is)) (car 1s))))))
(up-sum (list 1 23 6 12 7)))
-21
;o whichis 1- 23 +6 - 12 + 7.



Husk-and-K ernel with Local Kernels

We can usd et r ec expressions to separate the husk and the kernel of a recursive procedure without

having to define two procedures.

;;: Procedure
- i ndex
;. Parameters:
- sought, a val ue.
- stuff, a list.
i+ Purpose
. Find the position of a given value in a given |ist.
;.. Produces:
Vs pos
;;; Preconditions
N None.
;;; Postconditions:
N pos is either (1) #f, if sought is not in stuff or (2) a
- nonnegative integer, if sought is in stuff.
- Affects neither sought nor stuff.
- If pos is #f, then sought is not in stuff.
M If pos is a nonnegative integer, then (list-ref stuff pos)
v is equal to sought.
(define index

(lanbda (sought stuff)

(i ndex-kernel sought stuff 0)))

Ker nel :
i ndex-kerne
Par anet er s:
sought, as above
rest, a sublist of stuff
bypassed, an integer that counts how nmany val ues have
been bypassed in stuff
Pur pose
To keep | ooking for sought in part of the list.
(define index-kerne
(l anmbda (sought rest bypassed)
(cond ((null? rest) #f)
((equal ? (car rest) sought) bypassed)
(el se (index-kernel sought (cdr rest) (+ bypassed 1))))))

This works, but it's more stylish to construct the kernel procedure ingigé @ec expression, so that the

extra identifier can be bound to it locally:

(define index
(lanbda (sought stuff)
(letrec ((kernel (lanbda (rest bypassed)
(cond ((null? rest) #f)
((equal ? (car rest) sought) bypassed)

(el se (kernel (cdr rest) (+ bypassed 1)))))))

(kernel stuff 0))))



Notice, too, that since the recursive kernel procedure is now entirely inside the bodyi afdéme
procedure, it is not necessary to pass the vals@wofht to the kernel as a parameter. Instead, the kernel
can treasought as if it were a constant, since its value doesn’t change during any of the recursive calls.

The same approach can be used to perform precondition tests efficiently, by placing them with the husk in
the body of al etrec-expression and omitting them from the kernel. For instance, here’'s how to
introduce precondition tests into theeat est - of - I i st procedure from the reading on preconditions

and postconditions:

(define greatest-of-1list
(lambda (Is)
(letrec (
all-real? checks if all the values in a list are real
(all-real? (lanmbda (Is)
(or (null? 15s)
(and (real? (car Is))
(all-real? (cdr 1s))))))
kernel finds the greatest in a list wo verifying preconditions.
(kernel (lambda (rest)
(if (null? (cdr rest))
(car rest)
(max (car rest) (kernel (cdr rest)))))))
Check all the preconditions and then do the work.
(cond ((not (list? 1Is))
(error "greatest-of-list"
"Argunent nmust a list."))
((nul'1? 1s)
(error "greatest-of-list"
"Argunent nust be a non-enpty list."))
((not (all-real? Is))
(error "greatest-of-list"
"Argunent list nust contain only nunbers."))
(el se (kernel 1s))))))

Embedding the kernel inside the definition gf eat est - of -1 i st rather than writing a separate
greatest-of-1ist-kernel procedure has another advantage: It is impossible for an incautious user
to invoke theker nel procedure directly, bypassing the precondition tests.ohheway to get at the
recursive procedure to whidter nel is bound is to invoke the procedure within which the binding is
established.

We've recycled the namieer nel in this example to drive home the point that local bindings in separate
procedures don't interfere with one another. Even if both procedures were active at the same time, the
correctker nel procedure would be used in each case because the correct local binding would supersede
all others.

Hence, even though boihndex andgreat est-of -1i st have a helper namdder nel , we can
safely write.

(index (greatest-of-list (list 18 6 14 7 2))
(list 18 6 14 7 2))



An Alternative: The Named | et

Many programmers udeet r ec-expressions in writing most of these husk-and-kernel procedures. When
there is only one recursive procedure to bind, however, a contemporary Scheme programmer might well
use yet another variation of thet -expression -- the “namddet .

The named et has the same syntax as a regulat -expression, except that there is an identifier
between the keywortet and the binding list. The namedt binds this extra identifier to a kernel
procedure whose parameters are the same as the variables in the binding list and whose body is the same
as the body of theet -expression. Here’s the basic form

(let name ((param; val 1)
(param, val 5)

kbéramn val ,))
body)

You can think of this as a more elegant (and, eventually, more readable) shorthand for

(letrec ((name (lambda (param; ... paramg)
body)))
(nanme val ;1 ... val ,))

So, for example, one might write thadex procedure as follows:

(define index
(lanmbda (sought 15s)
(let kernel ((rest Is)
(bypassed 0))
(cond ((null? rest) #f)
((equal ? (car rest) sought) bypassed)
(el se (kernel (cdr rest) (+ bypassed 1)))))))

When we enter the namddet , the identifierr est is bound to the value dfs and the identifier
bypassed is bound to O, just as if we were entering an ordihay-expression. In addition, however,
the identifierker nel is bound to a procedure that hasst andbypassed as parameters and the body
of the named et as its body. As we evaluate tbend-expression, we may encounter a recursive call to
theker nel procedure -- in effect, we re-enter the body of the nane¢d with r est now re-bound to
the former value of cdr rest) andbypassed to the former value df+ bypassed 1).

As another example, here’s a versiors ofnthat uses a nameéakt :

(define sum
(lambda (Is)
(let kernel ((rest Is)
(running-total 0))
(if (null? rest)
runni ng-tota
(kernel (cdr rest) (+ (car rest) running-total))))))



Scheme programmers seem to be mixed in their reaction to the hame8ome find it clear and elegant,
others find it murky and too special-purpose. My colleagues like to use it. I'll admit that | first found it
murky, but eventually came to like it. | hope that you will, too.

Copyright © 2006 Samuel A. Rebelsky. This work is licensed undgr_a Creative Cdmmons
[Attribution-NonCommercial 2.5 License. To view a copy of this license, Vvisit
lhttp://creati vecommons. org/licenses/by-nc/2.5/| or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.



http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Local Procedure Bindings and Recursion
	Introduction
	Local Procedure Bindings
	A Problem: Recursive Procedure Bindings
	A Solution: letrec
	Husk-and-Kernel with Local Kernels
	An Alternative: The Named let


