
Fundamentals of Computer Science I (CS151.01 2006F)

Quicksort
Summary: In a recent reading, you explored merge sort, a comparatively efficient algorithm for sorting
lists or vectors. In this reading, we consider one of the more interesting sorting algorithms, Quicksort.

Contents:

Alternative Strategies for Dividing Lists
Identifying Small and Large Elements
Selecting a Pivot
Refactoring
An Alternate Strategy for Building the Lists of Small, Equal, and Large Values
Which Quicksort is Best?

Alternative Strategies for Dividing Lists
As you may recall, the two key ideas in merge sort are: (1) use the technique known as of divide and
conquer to divide the list into two halves (and then sort the two halves); (2) merge the halves back
together. As we saw in both the reading and the corresponding lab, we can divide the list in almost any
way.

Are there better sorting algorithms than merge sort? If our primary activity is to compare values, we
cannot do better than some constant times nlog2n steps in the sorting algorithm. However, that hasn’t

stopped computer scientists from exploring alternatives to merge sort. (In the next course, you’ll learn
some reasons that we might want such alternatives.)

One way to develop an alternative to merge sort is to split the values in the list in a more sensible way. For
example, instead of splitting into “about half the elements” and “the remaining elements”, we might
choose the to divide into “the smaller elements” and “the larger elements”.

Why would this strategy be better? Well, if we know that every small element precedes every large
element, then we can significantly simplify the merge step: We just need to append the two sorted lists
together, with the equal elements in the middle.

(define new-sort
 (lambda (lst precedes?)
 (if (or (null? lst) (null? (cdr lst)))
 lst
 (let ((smaller (small-elements lst precedes?))
 (same (equal-elements lst precedes?))
 (larger (large-elements lst precedes?)))
 (append (new-sort smaller) same (new-sort larger))))))

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2006F/

You’ll note that we used precedes? rather than the may-precede? that we used in previous sorting
algorithms. That’s because we really want to segment out the strictly larger and strictly smaller values.
(Other variants of this sorting algorithm might include the equal elements in one side or the others.
However, such versions require consideration of some subtleties that we’d like to avoid.)

Identifying Small and Large Elements
It sounds like a great idea, doesn’t it? Instead of split and merge, we can sort by writing
small-elements, equal elements, and large-elements. So, how do we write those
procedures? A statistician might tell us that “the small elements are all the elements less than the median”
and that “the large elements are the elements greater than the median”. That’s a pretty good starting
definition. Now, how do we find the median? Usually, we sort the values and look at the middle position.
Whoops. If we need the median to sort, and we need to sort to get the median, we’re stuck in an overly
recursive situation.

So, what do we do? A computer scientist named C. A. R. Hoare had an interesting suggestion: Randomly
pick some element of the list and use that as a simulated median. That is, anything smaller than that
element is “small” and anything larger than that element is “large”. Because it’s not the median, we need
another name for that element. Traditionally, we call it the pivot. Is using a randomly-selected pivot a good
strategy? You need more statistics than most of us know to prove formally that it works well. However,
practice suggests that it works very well.

We can now write small-elements, equal-elements, large-elements by including the
pivot.

(define small-elements
 (lambda (lst precedes? pivot)
 (cond
 ((null? lst) null)
 ((precedes? (car lst) pivot)
 (cons (car lst) (small-elements (cdr lst) precedes? pivot)))
 (else
 (small-elements (cdr lst) precedes? pivot)))))

(define large-elements
 (lambda (lst precedes? pivot)
 (cond
 ((null? lst) null)
 ((precedes? pivot (car lst))
 (cons (car lst) (large-elements (cdr lst) precedes? pivot)))
 (else
 (large-elements (cdr lst) precedes? pivot)))))

(define equal-elements
 (lambda (lst precedes? pivot)
 (cond
 ((null? lst) null)
 ((and (not (precedes? pivot (car lst)))
 (not (precedes? (car lst) pivot)))
 (cons (car lst) (equal-elements (cdr lst) precedes? pivot)))
 (else
 (equal-elements (cdr lst) precedes? pivot)))))

2

You may note that equal-elements does not use equal? to compare the pivot to the car. Why not?
Because our ordering may be more subtle. For example, we may be comparing people by height (one of
the many values we store for each person), and two different people can still be equal in terms of height.

Once we’ve defined these three procedures, we then have to update our main sorting algorithm to find the
pivot and to use it in identifying small, equal, and large elements. Since we use the sublists only once, we
won’t even bother naming them. We’ll call the new algorithm Quicksort, since that’s what Hoare called it.

(define Quicksort
 (lambda (lst precedes?)
 (if (or (null? lst) (null? (cdr lst)))
 lst
 (let ((pivot (random-element lst)))
 (append (Quicksort (small-elements lst precedes? pivot)
 precedes?)
 (equal-elements lst precedes? pivot)
 (Quicksort (large-elements lst precedes? pivot)
 precedes?))))))

Selecting a Pivot
How do we select a random element from the list? We’ve done so many times before that the code should
be self explanatory.

(define random-element
 (lambda (lst)
 (list-ref lst (random (length lst)))))

Refactoring
Are we done? In one sense, yes, we have a working sorting procedure. However, good design practice
suggests that we look for ways to simplify or otherwise clean up our code. What are the main principles?
(1) Don’t name anything you don’t need to name. (2) Don’t duplicate code.

The only thing we’ve named is the pivot. We’ve used it three times, which argues for naming it. More
importantly, since the pivot is a randomly chosen value, our code will not work the same (nor will it work
correctly) if we substitute (random-element lst) for each of the instances of pivot. Hence, the
naming is a good strategy.

Do we have any duplicated code? Yes, small-values, equal-values, and large-values are
very similar. Each scans a list of values and selects those that meet a particular predicate (in the first case,
those less than the pivot, in the second, those equal to the pivot, in the third, those greater than to the
pivot). Hence, we might want to write a select procedure that extracts the similar code.

;;; Procedure:
;;; select
;;; Parameters:
;;; pred?, a unary predicate
;;; lst, a list
;;; Purpose:

3

;;; Create a list of all values in lst for which pred? holds.
;;; Produces:
;;; selected, a list
;;; Preconditions:
;;; pred? can be applied to each element of lst.
;;; Postconditions:
;;; Every element in selected is in lst.
;;; pred? holds for every element of selected.
;;; If there’s a value in lst for which pred? holds, then the value is in
;;; selected.
(define select
 (lambda (pred? lst)
 (cond
 ((null? lst) null)
 ((pred? (car lst))
 (cons (car lst) (select pred? (cdr lst))))
 (else (select pred? (cdr lst))))))

Now, we can write Quicksort without relying on the helpers small-elements and
large-elements.

(define Quicksort
 (lambda (lst precedes?)
 (if (or (null? lst) (null? (cdr lst)))
 lst
 (let ((pivot (random-element lst)))
 (append (Quicksort
 (select (lambda (val) (precedes? val pivot)) lst)
 precedes?)
 (select (lambda (val) (and (not (precedes? val pivot))
 (not (precedes? pivot val))))
 lst)
 (Quicksort
 (select (lambda (val) (precedes? pivot val)) lst)
 precedes?))))))

Can we make this even shorter? Well, the selection of large elements looks a lot like a use of
left-section and the selection of small elements is a lot like a use of right-section. The
selection of equal elements we may just have to leave in its more complex form.

Now we can write something even more concise.

(define Quicksort
 (lambda (lst precedes?)
 (if (or (null? lst) (null? (cdr lst)))
 lst
 (let ((pivot (random-element lst)))
 (append (Quicksort (select (r-s precedes? pivot) lst) precedes?)
 (select (lambda (val) (and (not (precedes? val pivot))
 (not (precedes? pivot val))))
 lst)
 (Quicksort (select (l-s precedes? pivot) lst) precedes?))))))

4

An Alternate Strategy for Building the Lists of Small, Equal,
and Large Values
Some designers might focus not on the duplication of code between small-elements,
equal-elements, and large-elements and instead focus on the issue that all we’re really doing is
splitting lst into three lists. They might suggest that instead of writing select, we write a
partition procedure that breaks a list into three parts.

;;; Procedure:
;;; partition
;;; Parameters:
;;; lst, a list
;;; pivot, a value
;;; precedes?, a binary predicate
;;; Purpose:
;;; Partition lst into three lists,
;;; one for which (precedes? val pivot) holds,
;;; one for which (precedes? pivot val) holds, and
;;; one for which neither holds.
;;; Produces:
;;; (smaller-elements equal-elements larger-elements), A two element list
;;; Preconditions:
;;; precedes? can be applied to pivot and any value of lst.
;;; Postconditions:
;;; (append smaller-elements equal-elements larger-elements)
;;; is a permutation of lst.
;;; (precedes? (list-ref smaller-elements i) pivot)
;;; holds for every i, 0 < i < (length smaller-elements).
;;; (precedes? pivot (list-ref larger-elements j))
;;; holds for every j, 0 < j < (length larger-elements).
;;; Neither (precedes? (list-ref equal-elements k) pivot)
;;; nor (precedes? pivot (list-ref equal-elements k))
;;; holds for eery k, 0 < k < (length equal-elements)
(define partition
 (lambda (lst pivot precedes?)
 (letrec ((kernel
 (lambda (remaining smaller-elements equal-elements larger-elements)
 (cond
 ((null? remaining)
 (list smaller-elements equal-elements larger-elements))
 ((precedes? (car remaining) pivot)
 (kernel (cdr remaining)
 (cons (car remaining) smaller-elements)
 equal-elements
 larger-elements))
 ((precedes? pivot (car remaining))
 (kernel (cdr remaining)
 smaller-elements
 equal-elements
 (cons (car remaining) larger-elements)))
 (else
 (kernel (cdr remaining)

5

 smaller-elements
 (cons (car remaining) equal-elements)
 larger-elements))))))
 (kernel lst null null null))))

Here’s yet another version of Quicksort that uses this procedure.

(define Quicksort
 (lambda (lst precedes?)
 (display lst) (newline)
 (if (or (null? lst) (null? (cdr lst)))
 lst
 (let* ((pivot (random-element lst))
 (parts (partition lst pivot precedes?)))
 (append (Quicksort (car parts) precedes?)
 (cadr parts)
 (Quicksort (caddr parts) precedes?))))))

Which Quicksort is Best?
You’ve now seen four versions of Quicksort. Which one is best? The last one is probably the most
efficient, since it only scans the list once to identify the small elements and large elements. The other three
scan the list twice.

Different readers find different versions clearer or less clear. You’ll need to decide which you like the
most from that perspective (and you might even want to think about how you’d express the criteria by
which you make your decision).

Copyright © 2006 Samuel A. Rebelsky. This work is licensed under a Creative Commons
Attribution-NonCommercial 2.5 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

6

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Quicksort
	Alternative Strategies for Dividing Lists
	Identifying Small and Large Elements
	Selecting a Pivot
	Refactoring
	An Alternate Strategy for Building the Lists of Small, Equal, and Large Values
	Which Quicksort is Best?

